Skip to main content

Advertisement

Log in

Schinus terebinthifolia leaf lectin (SteLL) is an immunomodulatory agent by altering cytokine release by mice splenocytes

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Schinus terebinthifolia leaf lectin (SteLL) was reported to be an antimicrobial and antitumor agent. In this work, we evaluated the immunomodulatory activity of SteLL on mice splenocytes and also determined its native molecular mass and putative sequence similarities with plant proteins. The effects of SteLL (12.5 μg/mL) on viability, cytosolic Ca2+ concentration ([Ca2+]cyt), cytosolic and mitochondrial levels of reactive oxygen species (ROS), and mitochondrial transmembrane potential (ΔΨm) of mice splenocytes were determined. In addition, the culture supernatants were collected for quantification of interleukins (IL), tumor necrosis factor (TNF), interferon-gamma (IFN-γ) and nitric oxide (NO). SteLL showed a native molecular mass of 12.4 kDa and tandem mass spectrometry (MS/MS) ions search revealed similarities with adenosine triphosphate (ATP) synthase and F1-ATPase from plants (4% and 6% coverage, respectively). SteLL was not toxic to splenocytes, did not alter the [Ca2+]cyt and ROS levels, and slightly reduced ΔΨm. The presence of SteLL stimulated the cells to release pro-inflammatory cytokines (IL-17A, TNF-α, IFN-γ and IL-2) and also of IL-4, an anti-inflammatory cytokine that can prevent exacerbated inflammation. SteLL induced decrease in the secretion of NO. In conclusion, SteLL has biotechnological potential as an immunomodulator agent for use in studies employing cultures of immune cells. In addition, the anti-infectious and antitumor properties of the leaves may involve the immunomodulation property of SteLL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ΔΨm:

Mitochondrial transmembrane potential

[Ca2+]cyt :

Cytosolic Ca2+ concentration

AnnV:

Annexin V

ATP:

Adenosine triphosphate

CBA:

Cytometric bead array

CXCL:

Chemokine (C-X-C motif) ligand

ESI-QUAD-TOF:

Electrospray ionization quadrupole time-of-flight

FITC:

Fluorescein isothiocyanate

HA:

Hemagglutinating activity

HSP70:

70-kDa heat shock proteins

IC50 :

Concentrations that reduced cell viability to 50%)

IFN-γ:

Interferon-gamma

IL:

Interleukin

JAK/STAT:

Janus kinases/signal transducer and activator of transcription proteins

MIP-1α:

Macrophage inflammatory protein 1α

MS/MS:

Tandem mass spectrometry

NO:

Nitric oxide (NO)

PBS:

Phosphate buffered saline

PI:

Propidium iodide

ROS:

Reactive oxygen species

SDS-PAGE:

Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate

SteLL:

Schinus terebinthifolia leaf lectin

Th:

T helper

TNF:

Tumor necrosis factor

UFPE:

Universidade Federal de Pernambuco

References

  • Blume B, Nürnberger T, Nass N, Scheel D (2000) Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12:1425–1440

    Article  CAS  Google Scholar 

  • Brito JS, Ferreira GRS, Klimczak E, Gryshuk L, Santos NDL, Patriota LLS, Moreira LR, Soares AKA, Barboza BR, Paiva PMG, Navarro DMAF, Lorena VMB, Melo CML, Coriolano MC, Napoleão TH (2017) Lectin from inflorescences of ornamental crop Alpinia purpurata acts on immune cells to promote Th1 and Th17 responses, nitric oxide release, and lymphocyte activation. Biomed Pharmacother 94:865–872

    Article  Google Scholar 

  • Brune M, Castaigne S, Catalano J, Gehlsen K, Ho AD, Hofmann WK, Hogge DE, Nilssom B, Or R, Romero AI, Simonsson B, Spearing R, Stadtmauer EA, Szer J, Wallhult E, Hellstrand K (2006) Improved leukemia-free survival after postconsolidation immunotherapy with histamine dihydrochloride and interleukin-2 in acute myeloid leukemia: results of a randomized phase 3 trial. Blood 108:88–96

    Article  CAS  Google Scholar 

  • Coelho LCBB, Silva PMS, Lima VLM, Pontual EV, Paiva PMG, Napoleão TH, Correia MTS (2017) Lectins, interconnecting proteins with biotechnological/pharmacological and therapeutic applications. Evid Based Complement Altern Med 2017:1594074

    Article  Google Scholar 

  • Degasperi GR, Zecchin KG, Borecky J, Cruz-Höfling MA, Castilho RF, Velloso LA, Guimarães F, Vercesi AE (2006) Verapamil-sensitive Ca2+ channel regulation of Th1-type proliferation of splenic lymphocytes induced by Walker 256 tumor development in rats. Eur J Pharmacol 54:179–184

    Article  Google Scholar 

  • Ding AH, Nathan CF, Stuehr DJ (1988) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol 141:2407–2412

    CAS  PubMed  Google Scholar 

  • Dwyer JM, Johnson C (1981) The use of concanavalin A to study the immunoregulation of human T cells. Clin Exp Immunol 46:237–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ermak G, Davies KJ (2002) Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 38:713–721

    Article  CAS  Google Scholar 

  • Gomes FS, Procópio TF, Napoleão TH, Coelho LCBB, Paiva PMG (2013) Antimicrobial lectin from Schinus terebinthifolius leaf. J Appl Microbiol 114:672–679

    Article  CAS  Google Scholar 

  • Haney EF, Hancock REW (2013) Peptide design for antimicrobial and immunomodulatory applications. Biopolymers 100:572–583

    Article  CAS  Google Scholar 

  • Hiroi M, Sakaeda Y, Yamaguchi H, Ohmori Y (2013) Anti-inflammatory cytokine interleukin-4 inhibits inducible nitric oxide synthase gene expression in the mouse macrophage cell line RAW264.7 through the repression of octamer-dependent transcription. Mediat Inflamm 2013:369693

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lannoo N, Van Damme EJM (2010) Nucleocytoplasmic plant lectins. Biochim Biophys Acta Gen Subj 1800:190–201

    Article  CAS  Google Scholar 

  • Lindenmaier DS, Putzke J (2011) Estudo etnobotânico em três comunidades Mbya/Guarani na região central do Rio Grande do Sul, Brasil. Cad Pesq 23:6–18

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin-phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Melo CML, Paim BA, Zecchin KG, Morari J, Chiaratti MR, Correia MTS, Coelho LCBB, Paiva PMG (2010) Cramoll 1,4 lectin increases ROS production, calcium levels, and cytokine expression in treated spleen cells of rats. Mol Cell Biochem 342:163–169

    Article  CAS  Google Scholar 

  • Mitra S, Leonard WJ (2018) Biology of IL-2 and its therapeutic modulation: mechanisms and strategies. J Leukoc Biol 103:643–655

    Article  CAS  Google Scholar 

  • Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2014) Reactive oxygen species in inflammation and tissue injury. Antiox Redox Signal 20:1126–1167

    Article  CAS  Google Scholar 

  • Morton JF (1978) Brazilian pepper—its impact on people, animals and the environment. Econ Bot 32:353–359

    Article  CAS  Google Scholar 

  • Murphy MP, Siegel RM (2013) Mitochondrial ROS fire up T cell activation. Immunity 38:201–202

    Article  CAS  Google Scholar 

  • Patriota LLS, Procópio TF, Brito JS, Sebag V, Oliveira APS, Soares AKA, Moreira LR, Lima TA, Soares T, Silva TD, Paiva PMG, Lorena VMB, Melo CML, Albuquerque LP, Napoleão TH (2017) Microgramma vacciniifolia (Polypodiaceae) fronds contain a multifunctional lectin with immunomodulatory properties on human cells. Int J Biol Macromol 103:36–46

    Article  CAS  Google Scholar 

  • Patriota LLS, Brito JS, Barboza BR, Paiva PMG, Melo CML, Napoleão TH (2019) A review on the immunomodulatory effects of plant lectins. In: Ng TB, Wong J, Tse R, Tse TF, Chan H (eds) Hemagglutinins: structures, functions and mechanisms. Nova Science Publishers, New York, pp 53–82

    Google Scholar 

  • Procópio TF, Moura MC, Albuquerque LP, Gomes FS, Santos NDL, Coelho LCBB, Pontual EV, Paiva PMG, Napoleão TH (2017) Antibacterial lectins: action mechanism, defensive roles and biotechnological potential. In: Collins E. (org) (ed) Antibacterials: synthesis, properties and biological activities. Nova Science Publishers, New York, pp 69–89

    Google Scholar 

  • Procópio TF, Patriota LLS, Barros BRS, Aguiar LMS, Lorena VMB, Paiva PMG, Melo CML, Napoleão TH (2018) Calliandra surinamensis lectin (CasuL) does not impair the functionality of mice splenocytes, promoting cell signaling and cytokine production. Biomed Pharmacother 107:650–655

    Article  Google Scholar 

  • Ramos DBM, Araújo MTMF, Araújo TCL, Santos-Neto OG, Silva MG, Silva YA, Torres DJL, Patriota LLS, Melo CML, Lorena VMB, Paiva PMG, Mendes RL, Napoleão TH (2019) Evaluation of antitumor activity and toxicity of Schinus terebinthifolia leaf extract and lectin (SteLL) in sarcoma 180-bearing mice. J Ethnopharmacol 233:148–157

    Article  Google Scholar 

  • Ribas MO, Sou HM, Sartoretto J, Lanzoni TA, Noronha L, Acra LA (2006) Efeito da Schinus terebinthifolius Raddi sobre o processo de reparo tecidual das lesões ulceradas induzidas na mucosa bucal do rato. Rev Odonto Ciênc 21:245–252

    Google Scholar 

  • Rosenberg SA (2014) IL-2: the first effective immunotherapy for human cancer. J Immunol 192:5451–5458

    Article  CAS  Google Scholar 

  • Santos TAR, Silva AC, Silva EB, Gomes PATM, Espíndola JWP, Cardoso MVO, Pereira VR (2016) Antitumor and immunomodulatory activities of thiosemicarbazones and 1,3-thiazoles in Jurkat and HT-29 cells. Biomed Pharmacother 82:555–560

    Article  Google Scholar 

  • Shrihari TG (2017) Dual role of inflammatory mediators in cancer. Ecancermedicalscience 11:721

    Article  CAS  Google Scholar 

  • Strbo N, Yin N, Stojadinovic O (2014) Innate and adaptive immune responses in wound epithelialization. Adv Wound Care 3:492–501

    Article  Google Scholar 

  • Tsien RY (1988) Fluorescence measurement and photochemical manipulation of cytosolic free calcium. Trends Neurosci 11:419–424

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; 408789/2016-6) for research grants and fellowships (RBZ, PMGP and THN) as well as to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Finance Code 001) and Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE; APQ-0108-2.08/14; APQ-0661-2.08/15) for financial support. The authors thank the Núcleo de Plataformas Tecnológicas of the Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (FIOCRUZ Pernambuco). We thank Ana Lucia Oliveira Carvalho and Augusto Vieira for technical assistance with mass spectrometry analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Viana Pontual.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, A.J.C.A., da Silva Barros, B.R., de Souza Aguiar, L.M. et al. Schinus terebinthifolia leaf lectin (SteLL) is an immunomodulatory agent by altering cytokine release by mice splenocytes. 3 Biotech 10, 144 (2020). https://doi.org/10.1007/s13205-020-2137-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-2137-2

Keywords

Navigation