Skip to main content
Log in

Genes and novel sRNAs involved in PAHs degradation in marine bacteria Rhodococcus sp. P14 revealed by the genome and transcriptome analysis

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Rhodococcus sp. P14 is able to degrade various polycyclic aromatic hydrocarbons (PAHs). In this study, 6 ring-hydroxylating dioxygenases and 24 monooxygenases genes related to PAHs degradation were identified in its genome. Moreover, various genes, like serine hydrolase, hydratase, alcohol dehydrogenase, protocatechuate 3,4-dioxygenase, β-ketoadipate CoA transferase and β-Ketoadipyl CoA thiolase, which were supposed to be involved in PAHs degradation were also identified. Based on the genome analysis, the proposed PAHs degradation pathway was constructed in P14 strain, which showed that PAHs was degraded into the acetyl CoA and succinyl CoA, then mineralized to CO2 via the TCA cycle. Furthermore, several genes, including cytochrome P450 (RS16725; RS16695; RS12220), catalase (RS15825), dehydrogenase (RS15755; RS18420) and hydrolase (RS16460; RS24665), showed increased expression level during PAHs degradation according to the transcriptome data. In addition, 12 novel sRNAs which were supposed to have the regulation function in PAHs degradation were identified. This study gives us the outlook of PAHs degradation pathway in Rhodococcus sp. P14. Moreover, it first demonstrates that sRNAs may harbor the regulation function in PAHs degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Aitken MD, Stringfellow WT, Nagel RD, Kazunga C, Chen S (1998) Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons. Can J Microbiol 44:743–752

    Article  CAS  Google Scholar 

  • Broderick JB (1999) Catechol dioxygenases. Essays Biochem 34:173–189

    Article  CAS  Google Scholar 

  • Denman RB (1993) Using RNAFOLD to predict the activity of small catalytic RNAs. Biotechniques 15:1090–1095

    CAS  PubMed  Google Scholar 

  • Gibson DT, Parales RE (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11:236–243

    Article  CAS  Google Scholar 

  • Jouanneau Y, Meyer C (2006) Purification and characterization of an arene cis-dihydrodiol dehydrogenase endowed with broad substrate specificity toward polycyclic aromatic hydrocarbon dihydrodiols. Appl Environ Microbiol 72:4726–4734

    Article  CAS  Google Scholar 

  • Kan J, Peng T, Huang T, Xiong G, Hu Z (2020) NarL, a Novel Repressor for CYP108j1 Expression during PAHs Degradation in Rhodococcus sp. P14. Int J Mol Sci 21:983

    Article  Google Scholar 

  • Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:354–357

    Article  Google Scholar 

  • Kim SJ, Kweon O, Freeman JP, Jones RC, Adjei MD, Jhoo JW, Edmondson RD, Cerniglia CE (2006) Molecular cloning and expression of genes encoding a novel dioxygenase involved in low- and high-molecular-weight polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 72:1045–1054

    Article  CAS  Google Scholar 

  • Kimura N, Kitagawa W, Mori T, Nakashima N, Tamura T, Kamagata Y (2006) Genetic and biochemical characterization of the dioxygenase involved in lateral dioxygenation of dibenzofuranfrom Rhodococcus opacus strain SAO101. Appl Microbiol Biotechnol 73:474–484

    Article  CAS  Google Scholar 

  • Klein G, Stupak A, Biernacka D, Wojtkiewicz P, Lindner B, Raina S (2016) Multiple transcriptional factors regulate transcription of the rpoE gene in Escherichia coli under different growth conditions and when the lipopolysaccharide biosynthesis is defective. J Biol Chem 291:22999–23019

    Article  CAS  Google Scholar 

  • Kong L, Zhang Y, Ye ZQ, Liu X, Zhao S, Wei L (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345–349

    Article  Google Scholar 

  • Kweon O, Kim SJ, Jones RC, Freeman JP, Cerniglia CE (2007) Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. J Bacteriol 189:464–472

    Article  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  Google Scholar 

  • Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  CAS  Google Scholar 

  • Li L, Huang D, Cheung MK, Nong W, Huang Q, Kwan HS (2013) BSRD: a repository for bacterial small regulatory RNA. Nucleic Acids Res 41:D233–238

    Article  CAS  Google Scholar 

  • Luo A, Wu Y, Xu Y, Kan J, Qiao J, Huang T, Hu Z (2016) Characterization of a cytochrome P450 monooxygenase capable of high molecular weight PAHs oxidization from Rhodococcus sp. P14. Process Biochem 51:2127–2133

    Article  CAS  Google Scholar 

  • Mandalakis M, Gustafsson O, Alsberg T, Egebäck AL, Reddy CM, Xu L, Klanova J, Holoubek I, Stephanou EG (2005) Contribution of biomass burning to atmospheric polycyclic aromatic hydrocarbons at three European background sites. Environ Sci Technol 39:2976–2982

    Article  CAS  Google Scholar 

  • Mann B, Van OT, Wang J, Obert C, Wang YD, Carter R et al (2012) Control of virulence by small RNAs in Streptococcus pneumoniae. PLoS Pathog 8:e1002788

    Article  CAS  Google Scholar 

  • Martínková L, Uhnáková B, Pátek M, Nesvera J, Kren V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177

    Article  Google Scholar 

  • Mason JR, Cammack R (1992) The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu Rev Microbiol 46:277–305

    Article  CAS  Google Scholar 

  • Moody JD, Freeman JP, Doerge DR, Cerniglia CE (2001) Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. Strain PYR-1. Appl Environ Microbiol 67:1476–1483

    Article  CAS  Google Scholar 

  • Nawrocki EP, Eddy SR (2013) Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29:2933–2935

    Article  CAS  Google Scholar 

  • Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR (2015) Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43:D130–137

    Article  CAS  Google Scholar 

  • Peng T, Luo A, Kan J, Liang L, Huang T, Hu Z (2018a) Identification of a ring-hydroxylating dioxygenases baa capable of benz[a]anthracene oxidization from Rhodococcus sp. P14. J Mol Microb Biotech 28:183–189

    Article  CAS  Google Scholar 

  • Peng T, Kan J, Lun J, Hu Z (2018b) Identification of novel sRNAs involved in oxidative stress response in fish pathogen Vibiro alginolyticus by transcriptome analysis. J Fish Dis 42:277–292

    Article  Google Scholar 

  • Schmidtke C, Abendroth U, Brock J, Serrania J, Becker A, Bonas U (2013) Small RNA sX13: a multifaceted regulator of virulence in the plant pathogen Xanthomonas. PLoS Pathog 9:e1003626

    Article  CAS  Google Scholar 

  • Song X, Xu Y, Li G, Zhang Y, Huang T, Hu Z (2011) Isolation, characterization of Rhodococcus sp. P14 capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons and aliphatic hydrocarbons. Mar Pollut Bull 62:2122–2128

    Article  CAS  Google Scholar 

  • Tafer H, Hofacker IL (2008) RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics 24:2657–2563

    Article  CAS  Google Scholar 

  • Wang R, Wennerstrom D, Cao WW, Khan AA, Cerniglia CE (2000) Cloning, expression, and characterization of the katG gene, encoding catalase-peroxidase, from the poly-cyclic aromatic hydrocarbon-degrading bacterium Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 66:4300–4304

    Article  CAS  Google Scholar 

  • Wolgel SA, Dege JE, Perkins-Olson PE, Jaurez-Garcia CH, Crawford RL, Münck E, Lipscomb JD (1993) Purification and characterization of protocatechuate 2, 3-dioxygenase from Bacillus macerans: a new extradiol catecholic dioxygenase. J Bacteriol 175:4414–4426

    Article  CAS  Google Scholar 

  • Zhang Y, Qin F, Qiao J, Li G, Shen C, Huang T, Hu Z (2012) Draft genome sequence of Rhodococcus sp. P14, a high molecular weight polycyclic aromatic hydrocarbons biodegrader. J Bacteriol 194:3546

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by NFSC (31670117 and 31700109) (National Nature Science Foundation of China).

Author information

Authors and Affiliations

Contributions

TP, JK and JH analyzed the data and wrote the paper, ZH designed the experiment.

Corresponding author

Correspondence to Zhong Hu.

Ethics declarations

Conflict of interest

No conflicts of interest in the authorship or publication of this contribution.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, T., Kan, J., Hu, J. et al. Genes and novel sRNAs involved in PAHs degradation in marine bacteria Rhodococcus sp. P14 revealed by the genome and transcriptome analysis. 3 Biotech 10, 140 (2020). https://doi.org/10.1007/s13205-020-2133-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-2133-6

Keywords