Abourached C, Catal T, Liu H (2014) Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Res 51:228–233. https://doi.org/10.1016/j.watres.2013.10.062
CAS
Article
PubMed
Google Scholar
American Public Health Association (1992) American Public Health Association, American Water Works Association, Water Pollution Control Federation, Standard Methods for the Examination of Water and Wastewater, 18th edn. American Public Health Association, Washington, DC
Google Scholar
Bisschops I, Spanjers H (2003) Literature review on textile wastewater characterisation. Environ Technol 24:1399–1411. https://doi.org/10.1080/09593330309385684
CAS
Article
PubMed
Google Scholar
Catal T (2016) Comparison of various carbohydrates for hydrogen production in microbial electrolysis cells. Biotechnol Biotechnol Equip 30:75–80. https://doi.org/10.1080/13102818.2015.1081078
CAS
Article
Google Scholar
Catal T, Lesnik KL, Liu H (2015) Suppression of methanogenesis for hydrogen production in single-chamber microbial electrolysis cells using various antibiotics. Biores Technol 187:77–83. https://doi.org/10.1016/j.biortech.2015.03.099
CAS
Article
Google Scholar
Catal T, Gover T, Yaman B, Droguetti J, Yilancioglu K (2017) Hydrogen production profiles using furans in microbial electrolysis cells. World J Microbiol Biotechnol 33:115. https://doi.org/10.1007/s11274-017-2270-1
CAS
Article
PubMed
Google Scholar
Catal T, Liu H, Fan Y, Bermek H (2018) A novel clean technology to convert sucrose and lignocellulose in microbial electrochemical cells into electricity and hydrogen. Biores Technol Rep 5:331–334. https://doi.org/10.1016/j.biteb.2018.10.002
Article
Google Scholar
Catal T, Kul A, Atalay VE, Bermek H, Ozilhan S, Tarhan N (2019) Efficacy of microbial fuel cells for sensing of cocaine metabolites in urine-based wastewater. J Power Sources 414:1–7. https://doi.org/10.1016/j.jpowsour.2018.12.078
CAS
Article
Google Scholar
Cebecioglu R, Yildirim M, Akagunduz D, Korkmaz I, Tekin HO, Atasever-Arslan B, Catal T (2019) Synergistic effects of quercetin and selenium on oxidative stress in endometrial adenocarcinoma cells. Bratisl Med J 120(6):449–455. https://doi.org/10.4149/BLL_2019_072
CAS
Article
Google Scholar
Chen BY (2002) Understanding decolorization characteristics of reactive azo dyes by Pseudomonas luteola: toxicity and kinetics. Process Biochem 38:437–446. https://doi.org/10.1016/S0032-9592(02)00151-6
CAS
Article
Google Scholar
Chen J, Cao Q, Han X (2020) Smart water-based ferrofluid with stable state transition property: preparation and its application in anionic dye removal. J Cleaner Prod. https://doi.org/10.1016/j.jclepro.2020.125003
Article
Google Scholar
Enisoglu-Atalay V, Atasever-Arslan B, Yaman B, Cebecioglu R, Kul A, Ozilhan S, Ozen F, Catal T (2018) Chemical and molecular characterization of metabolites from Flavobacterium sp. PLoS ONE 13(10):e0205817. https://doi.org/10.1371/journal.pone.0205817
CAS
Article
PubMed
PubMed Central
Google Scholar
Gürses A, Acıkyıldız M, Günes K, Gürses MS (2016) Classification of dye and pigments. Springer Briefs Green Chem Sustain. https://doi.org/10.1007/978-3-319-33892-7_3
Article
Google Scholar
Hou Y, Zhang R, Yu Z, Huang L, Liu Y, Zhou Z (2017) Accelerated azo dye degradation and concurrent hydrogen production in the single-chamber photocatalytic microbial electrolysis cell. Biores Technol 224:63–68. https://doi.org/10.1016/j.biortech.2016.10.069
CAS
Article
Google Scholar
Hu H, Fan Y, Liu H (2008) Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res 42(15):4172–4178. https://doi.org/10.1016/j.watres.2008.06.015
CAS
Article
PubMed
Google Scholar
Huang W, Chen J, Hu Y, Zhang L (2018) Enhancement of Congo red decolorization by membrane-free structure and bio-cathode in a microbial electrolysis cell. Electrochimica Acta 260:196–203. https://doi.org/10.1016/j.electacta.2017.12.055
Kadier A, Simayi Y, Abdeshahian P, Azman NF, Chandrasekhar K, Kalil MS (2016) A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alexandria Eng J 55(1):427–443. https://doi.org/10.1016/j.aej.2015.10.008
Article
Google Scholar
Katuri KP, Ali M, Saikaly PE (2019) The role of microbial electrolysis cell in urban wastewater treatment: integration options, challenges, and prospects. Curr Opin Biotechnol 57:101–110. https://doi.org/10.1016/j.copbio.2019.03.007
CAS
Article
PubMed
Google Scholar
Kumru M, Eren H, Catal T, Bermek H, Akarsubaşı AT (2012) Study of azo dye decolorization and determination of cathode microorganism profile in air-cathode microbial fuel cells. Environ Technol 33(18):2167–2175. https://doi.org/10.1080/09593330.2012.660655
CAS
Article
PubMed
Google Scholar
Laftani Y, Boussaoud A, Chatib B, ElMakhfouk M, Hachkar M, Khayar M (2019) Comparison of advanced oxidation processes for degrading Ponceau S dye Application of photo-Fenton process. Macedonian J Chem Chem Eng 38(2):197–205. https://doi.org/10.20450/mjcce.2019.1888
CAS
Article
Google Scholar
Leicester DD, Amezaga JM, Moore A, Heidrich ES (2020) Optimising the hydraulic retention time in a pilot-scale microbial electrolysis cell to achieve high volumetric treatment rates using concentrated domestic wastewater. Molecules 25(12):2945. https://doi.org/10.3390/molecules25122945
CAS
Article
PubMed Central
Google Scholar
Li Y, Yang HY, Shen JY, Mu Y, Yu HQ (2016) Enhancement of azo dye decolourization in a MFC-MEC coupled system. Bioresour Technol 202:93–100. https://doi.org/10.1016/j.biortech.2015.11.079
Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337(6095):686–690. https://doi.org/10.1126/science.1217412
CAS
Article
PubMed
Google Scholar
Lu L, Ren ZJ (2016) Microbial electrolysis cells for waste biorefinery: a state of the art review. Biores Technol 215:254–264. https://doi.org/10.1016/j.biortech.2016.03.034
CAS
Article
Google Scholar
Marathe SD, Shrivastava VS (2015) Removal of hazardous Ponceau S dye from industrial wastewater using nano-sized ZnO. Desalination and Water Treatment 54(7):2036–2040. https://doi.org/10.1080/19443994.2014.896293
CAS
Article
Google Scholar
Moiseyev A, Solberg B, Kallio AMI (2014) The impact of subsidies and carbon pricing on the wood biomass use for energy in the EU. Energy 76:161–167. https://doi.org/10.1016/j.energy.2014.05.051
Article
Google Scholar
Patil BN, Naik DB, Shrivastava VS (2011) Photocatalytic degradation of hazardous Ponceau-S dye from industrial wastewater using nanosized niobium pentoxide with carbon. Desalination 269:276–283. https://doi.org/10.1016/j.desal.2010.11.014
CAS
Article
Google Scholar
Ruan W, Hu J, Qi J, Hou Y, Zhou C, Wei X (2019) Removal of dyes from wastewater by nanomaterials: a review. Adv Mater Lett 10(1):09–20. https://doi.org/10.5185/amlett.2019.2148
CAS
Article
Google Scholar
Singh RL, Singh PK, Singh RP (2015) Enzymatic decolorization and degradation of azo dyes-A review. Int Biodeterior Biodegradation 104:21–31. https://doi.org/10.1016/j.ibiod.2015.04.027
CAS
Article
Google Scholar
Van Hanndel AC, Lettinga C (1994). Anaerobic Sewage Treatment—a Practical Guide for Regions with a Hot Climate, Chichester: Wiley 226
Wang YZ, Wang AJ, Liu WZ, Sun Q (2013) Enhanced azo dye removal through anode biofilm acclimation to toxicity in single-chamber biocatalyzed electrolysis system. Biores Technol 142:688–692. https://doi.org/10.1016/j.biortech.2013.05.007
CAS
Article
Google Scholar
Wilson EL, Kim Y (2016) The yield and decay coefficients of exoelectrogenic bacteria in bioelectrochemical systems. Water Res 94:233–239. https://doi.org/10.1016/j.watres.2016.02.054
CAS
Article
PubMed
Google Scholar
Zollinger H (1987) Color Chemistry-Synthesis. VCH Publishers, New York, Properties and application of organic dyes and pigment, pp 92–102
Google Scholar