Skip to main content

Polyhydroxyalkanoate and its efficient production: an eco-friendly approach towards development

Abstract

Polyhydroxyalkanoate (PHA) is the most promising solution to major ecological problem of plastic accumulation. The biodegradable and biocompatible properties of PHA make it highly demanding in the biomedical and agricultural field. The limited market share of PHA industries despite having tremendous demand as concerned with environment has led to knock the doors of scientific research for finding ways for the economic production of PHA. Therefore, new methods of its production have been applied such as using a wide variety of feedstock like organic wastes and modifying PHA synthesizing enzyme at molecular level. Modifying metabolic pathways for PHA production using new emerging techniques like CRISPR/Cas9 technology has simplified the process spending less amount of time. Using green solvents under pressurized conditions, ionic liquids, supercritical solvents, hypotonic cell disintegration for release of PHA granules, switchable anionic surfactants and even digestion of non-PHA biomass by animals are some novel strategies for PHA recovery which play an important role in sustainable production of PHA. Hence, this review provides a view of recent applications, significance of PHA and new methods used for its production which are missing in the available literature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Abid S, Raza ZA, Hussain T (2016) Production kinetics of polyhydroxyalkanoates by using Pseudomonas aeruginosagammaraymutantstrainEBN-8culturedonsoyabeanoil. Biotech 6:142–152

    Google Scholar 

  • Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S (2016) Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent developments. Int J Biol Macromol 89:161–174

    CAS  PubMed  Google Scholar 

  • Arauz AOP, Rabiela AEA, Torres AV, Hernandez AIR, Hernandez NC, Porras BV, Cuellar MRL (2019) Production and characterization of biodegradable films of a novel polyhydroxyalkanoate (PHA) synthesized from peanut oil. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2019.01.001

    Article  Google Scholar 

  • Arikawa H, Sato S, Fujiki T, Matsumoto K (2017) Simple and rapid method for isolation and quantitation of Polyhydroxyalkanoate by SDS-sonication treatment. J Biosci Bioeng 20:1–5

    Google Scholar 

  • Basnett P, Marcello E, Lukasiewicz B, Panchal B, Nigmatullin R, Knowles JC, Roy I (2018) Biosynthesis and characterization of a novel, biocompatible medium chain length polyhydroxyalkanoate by Pseudomonas mendocina CH50 using coconut oil as the carbon source. J Mater Sci: Mater Med 29:179–190

    Google Scholar 

  • Bustamante D, Tortajada M, Ramon D, Rojas A (2019) Camelina oil as a promising substrate for mcl-PHA production in Pseudomonas sp. cultures. Appl Food Biotechnol 6:61–70

    CAS  Google Scholar 

  • Caston IS, Kelly CA, Fitzgerald AVL, Leeke GA, Jenkins M, Overton TW (2015) Development of a rapid method to isolate polyhydroxyalkanoates from bacteria for screening studies. J Biosci Bioeng 20:1–4

    Google Scholar 

  • Castro OV, Calderon JC, Leon E, Segura A, Arias M, Perez L, Sobral PJA (2016) Characterization of a polyhydroxyalkanoate obtained from pineapple peel waste using Ralstonia eutropha. J Biotechnol 231:232–238

    Google Scholar 

  • Chee JY, Tan Y, Samian MR, Sudesh K (2010) Isolation and characterization of a Burkholderia sp. USM (JCM15050) capable of producing polyhydroxyalkanoate (PHA) from trigycerides, fatty acids and glycerols. J Polym Environ 18:584–592

    CAS  Google Scholar 

  • Chen GQ (2009) A microbial polhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446

    CAS  PubMed  Google Scholar 

  • Ciesielski S, Mozejko J, Pisutpaisal N (2015) Plant oils as promising substrate for polyhydroxyalkanoates production. Clean J Prod 106:408–421

    CAS  Google Scholar 

  • Cruz MV, Freitas F, Paiva A, Mano F, Dionisio M, Ramos AM, Reis AM (2016) Valorization of fatty acids-containing wastes and byproducts into short and medium chain length polyhydroxyalkanoates. New Biotechnol 33:206–215

    CAS  Google Scholar 

  • de las Heras AM, Portugal-Nunes DJ, Rizza N, Sandström AG, Gorwa-Grauslund MF (2016) Anaerobic poly-3-hydroxybutyrate production from xylose in recombinant Saccharomyces cerevisiae using a NADH-dependent acetoacetyl-CoA reductase. Microb Cell Fact 15:197

    PubMed Central  Google Scholar 

  • Dubey S, Bharmoria P, Gehlot PS, Agrawal V, Kumar A, Mishra S (2018) 1-Ethyl-3- methylimidazolium diethylphosphate based extraction of bioplastic “Polyhydroxyalkanoates” from bacteria: green and sustainable approach. ACS Sustain Chem Eng 6:766–773

    CAS  Google Scholar 

  • Fauzi AHM, Chua ASM, Yoon LW, Nittami T, Yeoh HK (2019) Enrichment of PHA- accumulators for sustainable PHA production from crude glycerol. Process Saf Environ 122:200–208

    Google Scholar 

  • Findlay RH, White DC (1983) Polymeric beta hydroxyalkanoates from environmental samples and Bacillus megaterium. Appl Environ Microbiol 45:71–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchtenbusch B, Steinbuchel A (1999) Biosynthesis of polyhydroxyalkanoates from low-rank coal liquefaction products by Pseudomonas oleovorans and Rhodococcus ruber. Appl Microbiol Biotechnol 52:91–95

    CAS  PubMed  Google Scholar 

  • Fukui T, Shiomi N, Doi Y (1998) Expression and characterization of (R)-specific enoyl coenzyme A hydratase involved in Polyhydroxyalkanoate biosynthesis by Aeromonas caviae. J Bacteriol 180:667–673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Gnaim R, Greiserman S, Fadeev L, Gozin M, Golberg A (2019) Macroalgal biomass subcritical hydrolysates for the production of Polyhydroxyalkanoate (PHA) by Haloferax mediterranei. Bioresour Technol 271:166–173

    CAS  PubMed  Google Scholar 

  • Haas R, Jin B, Zepf FT (2014) Production of Poly(3-hydroxybutyrate) from waste potato starch. Biosci Biotechnol Bioschem 72:1–4

    Google Scholar 

  • Hiroe A, Tsuge K, Nomura CT, Itaya M, Tsuge T (2012) Rearrangement of gene order in the phaCAB operon leads to effective production of ultrahigh-molecular-weight poly [(R)-3-hydroxybutyrate] in genetically engineered Escherichia coli. Appl environ microbiol 78:3177–3184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann N, Amara AA, Beermann BB, Qi Q, Hinz HJ, Rehm BH (2002) Biochemical characterization of the Pseudomonas putida 3-hydroxyacyl ACP:CoA transacylase, which diverts intermediates of fatty acid de novo biosynthesis. J Biol Chem 77:42926–42936

    Google Scholar 

  • Hrabak O (1992) Industrial production of poly-β-hydroxybutyrate. FEMS Microbiol Rev 103:251–256

    CAS  Google Scholar 

  • https://www.european-bioplastics.org/market/

  • Huang TY, Duan KJ, Huang SY, Chen CW (2006) Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J Ind Microbiol Biotechnol 33:701–706

    CAS  PubMed  Google Scholar 

  • Insomphun C, Kobayashi S, Fujiki T, Numata K (2016) Biosynthesis of polyhydroxyalkanoates containing hydroxyl group from glycolate in Escherichia coli. AMB Express 6:29–37

    PubMed  PubMed Central  Google Scholar 

  • Ishak AK, Annuar MSM, Heidelberg T, Gumel AM (2016) Ultrasound-assisted rapid extraction of bacterial intracellular medium-chain-length poly(3-hydroxyalkanoates) (mcl- PHAs) in medium mixture of solvent/marginal non-solvent. Arab J Sci Eng 41:33–44

    Google Scholar 

  • Jangra MR, Ikbal NKS, Jangra S, Pippal A, Sikka VK (2018) Recent updates on the economic use of poly hydroxy butyrate (PHB): a green alternative to plastics. Biosci Biotech Res Comm 11:97–109

    Google Scholar 

  • Kachrimanidou V, Kopsahelis N, Vlysidis A, Papanikolaou S, Kookos IK et al (2016) Downstream separation of poly (hydroxyalkanoates) using crude enzyme consortia produced via solid state fermentation integrated in a biorefinery concept. Food Bioprod Proc 100:323–334

    CAS  Google Scholar 

  • Khosravi-Darani K, Vasheghani-Farahani E, Shojaosadati SD, Yamini Y (2004) Effect of process variables on supercritical fluid disruption of Ralstonia eutropha cells for poly-(R)-hydroxybutyrate recovery. Biotechnol Progr 20:1757–1765

    CAS  Google Scholar 

  • Khunthongkaew P, Murugan P, Sudesh K, Iewkittayakorn J (2018) Biosynthesis of polyhydroxyalkanoates using Cupriavidus necator H16 and its application for particleboard production. J polym Res 25:131–140

    Google Scholar 

  • Koller M (2018a) Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules 23:362–382

    PubMed Central  Google Scholar 

  • Koller M (2018b) Chemical and biochemical engineering approaches in manufacturing polyhydroxyalkanoate (PHA) biopolyesters of tailored structure with focus on the diversity of building blocks. Chem Biochem Eng Q 32:413–438

    CAS  Google Scholar 

  • Koller M (2020) Established and advanced approaches for recovery of microbial polyhydroxyalkanoate (PHA) biopolyesters from surrounding microbial biomass. Eurobiotech j 4:113–126

    Google Scholar 

  • Koller M, Braunegg G (2015) Biomediated production of structurally diverse poly (hydroxyalkanoates) from surplus streams of the animal processing industry. Polimery. https://doi.org/10.14314/polimery.2015.298

    Article  Google Scholar 

  • Koller M, Bona R, Chiellini E, Fernandes EG, Horvat P, Kutschera C, Hesse P, Braunegg G (2008) Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora. Bioresour Technol 99:4854–4863

    CAS  PubMed  Google Scholar 

  • Kunasundari B, Sudesh K (2011) isolation and recovery of microbial polyhydroxyalkanoates. EXPRESS Polym Lett 7:620–634

    Google Scholar 

  • Kunasundari B, Arza CR, Maurer FHJ, Murugaiyah V, Kaur G, Sudesh K (2017) Biological recovery and properties of poly(3-hydroxybutyrate) from Cupriavidus necatorH16. Sep Purif Technol 172:1–6. https://doi.org/10.1016/j.seppur.2016.07.043

    Article  CAS  Google Scholar 

  • Langenbach S, Rehm BR, Steinbuchel A (1997) Functional expression of the PHA synthase gene pha C1 from Pseudomonas aeruginosa in Escherichia coli results in poly (3-hydroxyalkanoate) synthesis. FEMS microbiol lett 150:303–309

    CAS  PubMed  Google Scholar 

  • Lemechko P, Magali LF, Bruzaud S (2019) Production of poly(3-hydroxybutyrate-co-3- hydroxyvalerate) using agro-industrial effluents with tunable proportion of 3-hydroxyvalerate monomer units. Int J Biolog Macromol 128:429–434

    CAS  Google Scholar 

  • Ling C, Qiao GQ, Shuai BW, Olavarria K, Yin J, Xiang RJ, Song KN, Shen YH, Guo Y, Chen GQ (2018) Engineering NADH/NAD+ ratio in Halomonas bluephagenesis for enhanced production of Polyhydroxyalkanoates (PHA). MetaboL Eng. https://doi.org/10.1016/j.ymben.2018.09.007

    Article  Google Scholar 

  • Marjadi D, Dharaiya N (2014) Recovery and characterization of poly(3-hydroxybutyric acid) synthesized in Staphylococcus epidermidis. Afric J Environ Sci Technol 8:319–329

    Google Scholar 

  • Martin DP, Peoples OP, Williams SF, Zhong LH (2002) US Patent No. 6380244

  • Martino L, Cruz MV, Scoma A, Freitas F, Bertin L et al (2014) Recovery of amorphous polyhydroxybutyrate granules from Cupriavidus necator cells grown on used cooking oil. Int J Biol Macromol 71:117–123. https://doi.org/10.1016/j.ijbiomac.2014.04.016

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra S, Mohanta P, Sarkar B, Daware A, Kumar C, Samantaray D (2015) Production of polyhydroxyalkanoates (PHAs) by Bacillus strain isolated from waste water and its biochemical characterization. Proc Natl Acad Sci India Sect Biolog Sci. https://doi.org/10.1007/s40011-015-0626-6

    Article  Google Scholar 

  • Obruca S, Benesova P, Petrik S, Oborna J, Prikryl R, Marova I (2015) Production of polyhydroxyalkanoates using hydrolysate of spent coffee grounds. Proc Biochem 49:1409–1414

    Google Scholar 

  • Obruca S, Sedlacek P, Krzyzanek V, Mravec F, Hrubanova K, Samek O, Kucera D, Benesova P, Marova I (2016) Accumulation of poly(3-hydroxybutyrate) helps bacterial cells to survive freezing. PLoS ONE. https://doi.org/10.1371/journal.pone.0157778

    Article  PubMed  PubMed Central  Google Scholar 

  • Obruca S, Sedlacek P, Slaninova E, Fritz I, Daffert C, Meixner K, Sedrlova Z, Koller M (2020) Novel unexpected functions of PHA granules. Appl Microbiol Biotechnol 104:4795–4810

    CAS  PubMed  Google Scholar 

  • Pfeiffer D, Jendrossek D (2014) PhaM is the physiological activator of poly(3- hydroxybutyrate) (PHB) synthase (PhaC1) in Ralstonia eutropha. Appl Environ Microbiol 80:555–563

    PubMed  PubMed Central  Google Scholar 

  • Qin Q, Ling C, Yiqing Z, Yang T, Yin J, Guo Y, Chen GQ (2018) CRISPR/Cas9 editing genome of extremophile Halomonas spp. Metab Eng. https://doi.org/10.1016/j.ymben.2018.03.018

    Article  PubMed  Google Scholar 

  • Rebocho AT, Pereira JR, Freitas F, Neves LA, Alves VD, Sevrin C (2019) Production of medium-chain length polyhydroxyalkanoates by Pseudomonas citronellolis grown in Apple pulp waste. Appl Food Biotechnol 6:71–82

    CAS  Google Scholar 

  • Reddy MV, Mawatari Y, Onodera R, Nakamura Y, Yajima Y, Chang YC (2017) Polyhydroxyalkanotes (PHA) production from synthetic waste using Pseudomonas pseudoflava: PHA synthase enzyme activity analysis from P. pseudoflava and P. palleronii. Bioresour Technol 234:99–105

    Google Scholar 

  • Rehm BH (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rehm BH (2006) Genetics and biochemistry of Polyhydroxyalkanoate granule self-assembly: the key role of polyester synthases. Biotechnol Lett 28:207–213

    CAS  PubMed  Google Scholar 

  • Sabapathy PC, Devaraj S, Parthiban A, Kathirvel P (2018) Bioprocess optimization of PHB homopolymer and copolymer P3(HB-co-HV) by Acinetobacter junii Bp25 utilizing rice mill effluent as sustainable substrate. Environ Technol 39:1441–1430

    Google Scholar 

  • Sabapathy PC, Devaraj S, Parthiban A, Pugazhendhi A, Kathirvel P (2019) Aegle marmelos: A novel low-cost substrate for the synthesis of Polyhydroxyalkanoate by Bacillus aerophilus RSL-7. Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2019.101021

    Article  Google Scholar 

  • Sadasivam S, Sigamani S, Venkatachalam H, Ramamurthy D (2018) A new method for the production of polyhydroxyalkanoates by Bacillus sp. and detect the presence of PHA synthase. Smart Sci. https://doi.org/10.1080/23080477.2018.1437332

    Article  Google Scholar 

  • Saharan BS, Grewal B, Kumar A (2014) Biotechnological production of polyhydroxyalkanoates: a review on trends and latest developments. Chin J Biol 2014:1–18

    Google Scholar 

  • Salvachua D, Rydzak T, Auwae R, Capite AD, Black BA, Bouvier JT et al (2019) Metabolic engineering of Pseudomonas putida for increased Polyhydroxyalkanoate production from lignin. Microbial biotechnol 13:290–298

    Google Scholar 

  • Shen R, Ning ZY, Lan YX, Chen JC, Chen GQ (2019) Manipulation of Polyhydroxyalkanoate granular sizes in Halomonas bluephagenesis. Metab Eng 54:117–126

    CAS  PubMed  Google Scholar 

  • Singh M, Kumar P, Ray S, Kalia VC (2015) Challenges and opportunities for customizing polyhydroxyalkanoates. Indian J Microbiol 55:235–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan GYA, Chen CL, Li L, Ge L, Wang L, Razaad IMN, Li Y, Zhao L, Mo Y, Wang JY (2014) Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6:706–754

    Google Scholar 

  • Urtuvia V, Villegas P, Fuentes S, Gonzalez M, Seegaer M (2018) Burkholderia xenovorans LB400 possesses a functional polyhydroxyalkanoate anabolic pathway encoded by the pha genes and synthesizes poly(3-hydroxybutyrate) under nitrogen-limiting conditions. Int Microbiol 21:47–57

    CAS  PubMed  Google Scholar 

  • Van-Thuoc D, Quikkaguaman J, Mamo G, Mattiasson B (2008) Utilization of agricultural residues for poly(3-hydroxybutyrate) production by Halomonas boliviensis LC1. J Appl Microbiol 104:420–428

    CAS  PubMed  Google Scholar 

  • Verlinden RAJ, Hill DJ, Kenward MA, Williams CD, Piotrowska-Seget Z, Radecka IK (2011) Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Express 1:11–19

    PubMed  PubMed Central  Google Scholar 

  • Vinet L, Zhedanov A (2010) A “missing” family of classical orthogonal polynomials. J Phys A Math Theor 54:450–472

    Google Scholar 

  • Volova T, Demidenko A, Kiselev E, Baranovskiy S, Shishatskaya E, Zhila N (2019) Polyhydroxyalkanoate synthesis based on glycerol and implementation of the process under conditions of pilot production. Appl Microbiol Biotechnol 103:225–237

    CAS  PubMed  Google Scholar 

  • Wallen LL, Rohwedder WK (1974) Poly-β-hydroxyalkanoate from activated sludge. Environ Sci Technol 8:576–579

    CAS  Google Scholar 

  • Wu H, Chen J, Chen GQ (2016) Engineering the growth pattern and cell morphology for enhanced PHB production by Escherichia coli. Appl Microbiol Biotechnol 100:9907–9916

    CAS  PubMed  Google Scholar 

  • Xiong B, Li Z, Liu L, Zhao D, Zhang X, Bi C (2018) Genome editing of Ralstonia eutropha using an electroporation-based CRISPR-Cas9 technique. Biotechnol Biofuels 11:172–181

    PubMed  PubMed Central  Google Scholar 

  • Yano T, Nomoto T, Kozaki S, Imamura T, Honma T, Canon KK (2006) US Patent No. 2006263432

  • Zhao F, Gong T, Liu X, Fan X, Huang R, Ma T, Wang S, Gao W, Yang C (2019) Morphology engineering for enhanced production of medium-chain-length polyhydroxyalkanoates in Pseudomonas mendocina NK-01. Appl Microbiol Biotechnol 103:1713–1724

    CAS  PubMed  Google Scholar 

  • Zheng Y, Yuan Q, Yang X, Ma H (2017) Engineering Escherichia coli for poly-(3-hydroxybutyrate) production guided by genome-scale metabolic network analysis. Enzyme Microb Technol 106:60–66

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support from Department of Biotechnology, Ministry of Science and Technology, Govt. of India, to Department of Biotechnology, Himachal Pradesh University, Shimla (India), is thankfully acknowledged. The financial assistance from CSIR (Council of Scientific and Industrial Research), in the form of Senior Research Fellow (SRF) is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have seen and approved the manuscript and its contents, and are aware of the responsibilities connected to the authorship. RS and RG had the idea for the article, RS performed the literature search, data analysis, writing and editing, revisions and RG had critically investigated and revised the work.

Corresponding author

Correspondence to Reena Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sehgal, R., Gupta, R. Polyhydroxyalkanoate and its efficient production: an eco-friendly approach towards development. 3 Biotech 10, 549 (2020). https://doi.org/10.1007/s13205-020-02550-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02550-5

Keywords

  • Applications
  • Biodegradable plastic
  • Biosynthesis of PHA
  • Economic production
  • Molecular approach