Skip to main content

Advertisement

Log in

Recent advances in understanding oligonucleotide aptamers and their applications as therapeutic agents

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The innovative discovery of aptamers was based on target-specific treatment in clinical diagnostics and therapeutics. Aptamers are synthetic, single-stranded oligonucleotides, simply described as chemical antibodies, which can bind to diverse targets with high specificity and affinity. Aptamers are synthesized by the SELEX technique, and possess distinctive properties as small size (10–50 kDa), higher stability, easy manufacture and less immunogenicity. These oligonucleotides are easily degraded by nucleases, so require some important modifications like capping and incorporation of modified nucleotides. RNA aptamers can be modified chemically on 2′ positions using -NH3, -F, -deoxy, or -OMe groups to enhance their nuclease resistance. Aptamers have been employed for multiple purposes, as direct drugs or aptamer–drug conjugates targeted against different diseased cells. Different aptamer-conjugated nanovehicles (e.g., micelles, liposomes, silica nano-shells) have been designed to transport diverse anticancer-drugs like doxorubicin and cisplatin in bulk to minimize systemic cytotoxicity. Some drug-loaded nanovehicles (up to 97% loading capacity) and conjugated with specific aptamer resulted in more than 60% tumor inhibition as compared to unconjugated drug-loaded nanovehicles which showed only 31% cancer inhibition. In addition, aptamers have been widely used in basic research, food safety, environmental monitoring, clinical diagnostics and therapeutics. Different FDA-approved RNA and DNA aptamers are now available in the market, used for the treatment of diverse diseases, especially cancer. These aptamers include Macugen, Pegaptanib, etc. Despite a good progress in aptamer use, the present-day chemotherapeutics and drug targeting systems still face great challenges. Here in this review article, we are discussing nucleic acid aptamers, preparation, role in the transportation of different nanoparticle vehicles and their applications as therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahirwar R, Nahar P (2015) Development of an aptamer-affinity chromatography for efficient single step purification of Concanavalin A from Canavalia ensiformis. J Chrom B 997:105–109

    CAS  Google Scholar 

  • Ai J, Xu Y, Lou B, Li D, Wang E (2014) Multifunctional AS1411-functionalized fluorescent gold nanoparticles for targeted cancer cell imaging and efficient photodynamic. Therapy Talanta 118:54–60

    CAS  PubMed  Google Scholar 

  • Alibolandi M, Ramezani M, Sadeghi F, Abnous K, Hadizadeh F (2015) Epithelial cell adhesion molecule aptamer conjugated PEG–PLGA nanopolymersomes for targeted delivery of doxorubicin to human breast adenocarcinoma cell line in vitro. Int J Pharmaceut 479:241–251

    CAS  Google Scholar 

  • Alizadeh L, Alizadeh E, Zarebkohan A, Ahmadi E, Rahmati-Yamchi M, Salehi R (2020) AS1411 aptamer-functionalized chitosan-silica nanoparticles for targeted delivery of epigallocatechin gallate to the SKOV-3 ovarian cancer cell lines. J Nanoparticle Res 22:1–14

    Google Scholar 

  • Alshaer W, Hillaireau H, Vergnaud J, Ismail S, Fattal E (2015) Functionalizing liposomes with anti-CD44 aptamer for selective targeting of cancer cells. Bioconj Chem 26:1307–1313

    CAS  Google Scholar 

  • Ara MN, Hyodo M, Ohga N, Hida K, Harashima H (2012) Development of a novel DNA aptamer ligand targeting to primary cultured tumor endothelial cells by a cell-based SELEX method. PLoS ONE 7:e50174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baek SE, Lee KH, Park YS, Oh D-K, Oh S, Kim K-S, Kim D-E (2014) RNA aptamer-conjugated liposome as an efficient anticancer drug delivery vehicle targeting cancer cells in vivo. J Control Release 196:234–242

    CAS  PubMed  Google Scholar 

  • Bagalkot V, Farokhzad OC, Langer R, Jon S (2006) An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Ed 45:8149–8152

    CAS  Google Scholar 

  • Bala J, Bhaskar A, Varshney A, Singh AK, Dey S, Yadava P (2011) In vitro selected RNA aptamer recognizing glutathione induces ROS-mediated apoptosis in the human breast cancer cell line MCF 7. RNA Biol 8:101–111

    CAS  PubMed  Google Scholar 

  • Bardeesy N, Pelletier J (1998) Overlapping RNA and DNA binding domains of the wt1 tumor suppressor gene product. Nuc Acid Res 26:1784–1792

    CAS  Google Scholar 

  • Barfod A, Persson T, Lindh J (2009) In vitro selection of RNA aptamers against a conserved region of the Plasmodium falciparum erythrocyte membrane protein 1. Parasitol Res 105:1557–1566

    PubMed  PubMed Central  Google Scholar 

  • Barman J (2015) Targeting cancer cells using aptamers: cell-SELEX approach and recent advancements. RSC Adv 5:11724–11732

    CAS  Google Scholar 

  • Bayrac AT, Sefah K, Parekh P, Bayrac C, Gulbakan B, Oktem HA, Tan WH (2011) In vitro selection of DNA aptamers to glioblastoma multiforme. ACS Chem Neurosci 2:175–181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beloqui A, des Rieux A, Preat V, (2016) Mechanisms of transport of polymeric and lipidic nanoparticles across the intestinal barrier. Adv Drug Deliv Rev 106:242–255

    CAS  PubMed  Google Scholar 

  • Berezovski M, Musheev M, Drabovich A, Krylov SN (2006) Non-SELEX selection of aptamers. J Am Chem Soc 128:1410–1411

    CAS  PubMed  Google Scholar 

  • Bianchini M, Radrizzani M, Brocardo MG, Reyes GB, Solveyra CG, Santa-Coloma TA (2001) Specific oligobodies against ERK-2 that recognize both the native and the denatured state of the protein. J Immunol Methods 252:191–197

    CAS  PubMed  Google Scholar 

  • Brandl M (2001) Liposomes as drug carriers: a technological approach. Biotechnol Ann Rev 7:59–85

    CAS  Google Scholar 

  • Brockstedt U, Uzarowska A, Montpetit A, Pfau W, Labuda D (2004) In vitro evolution of RNA aptamers recognizing carcinogenic aromatic amines. Biochem Biophy Res Commun 313:1004–1008

    CAS  Google Scholar 

  • Bruno JG (2015) Predicting the uncertain future of aptamer-based diagnostics and therapeutics. Molecules 20:6866–6887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruno JG, Richarte AM, Phillips T, Savage AA, Sivils JC, Greis A, Mayo MW (2014) Development of a fluorescent enzyme-linked DNA aptamer-magnetic bead sandwich assay and portable fluorometer for sensitive and rapid leishmania detection in sandflies. J Fluoresc 24:267–277

    CAS  PubMed  Google Scholar 

  • Bugaut A, Toulme JJ, Rayner B (2006) SELEX and dynamic combinatorial chemistry interplay for the selection of conjugated RNA aptamers. Org Biomol Chem 4:4082–4088

    CAS  PubMed  Google Scholar 

  • Burke DH, Willis JH (1998) Recombination, RNA evolution, and bifunctional RNA molecules isolated through chimeric SELEX. RNA 4(9):1165–1175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Z, Tong R, Mishra A, Xu W, Wong GC, Cheng J, Lu Y (2009) Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed 48:6494–6498

    CAS  Google Scholar 

  • Cao HY, Yuan AH, Chen W, Shi XS, Miao Y (2014) A DNA aptamer with high affinity and specificity for molecular recognition and targeting therapy of gastric cancer. BMC Cancer 14(1):1–9

    Google Scholar 

  • Chen A, Yang S (2015) Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron 71:230–242

    CAS  PubMed  Google Scholar 

  • Cheung YW, Kwok J, Law AW, Watt RM, Kotaka M, Tanner JA (2013) Structural basis for discriminatory recognition of Plasmodium lactate dehydrogenase by a DNA aptamer. Proc Natl Acad Sci USA 110:15967–15972

    CAS  PubMed  Google Scholar 

  • Cho M, Xiao Y, Nie J, Stewart R, Csordas AT, Oh SS, Thomson JA, Soh HT (2010) Quantitative selection of DNA aptamers through microfluidic selection and high-throughput sequencing. Proc Natl Acad Sci USA 107:15373–15378

    CAS  PubMed  Google Scholar 

  • Choi KH, Park MW, Lee SY, Jeon MY, Kim MY, Lee HK, Yu J, Kim HJ, Han K, Lee H, Park K (2006) Intracellular expression of the T cell factor-1 RNA aptamer as an intramer. Mol Can Therap 5:2428–2434

    CAS  Google Scholar 

  • Coulter LR, Landree MA, Cooper TA (1997) Identification of a new class of exonic splicing enhancers by in vivo selection. Mol Cell Biol 17:2143–2150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dam DH, Culver KS, Odom TW (2014) Grafting aptamers onto gold nanostars increases in vitro efficacy in a wide range of cancer cell types. Mol Pharmaceut 11:580–587

    CAS  Google Scholar 

  • D’Avino C, Palmieri D, Braddom A, Zanesi N, James C, Cole S, Salvatore F, Croce CM, De Lorenzo C (2016) A novel fully human anti-NCL immunoRNase for triple-negative breast cancer therapy. Oncotarget 7:87016

    PubMed  PubMed Central  Google Scholar 

  • Deissler HL, Lang GE (2008) Effect of VEGF165 and the VEGF aptamer pegaptanib (Macugen) on the protein composition of tight junctions in microvascular endothelial cells of the retina. Klin Monatsbl Augenh 225:863–867

    CAS  Google Scholar 

  • Du F, Guo L, Qin Q, Zheng X, Ruan G, Li J, Li G (2015) Recent advances in aptamer-functionalized materials in sample preparation TrAC. Trends Anal Chem 67:134–146

    CAS  Google Scholar 

  • Ellington AD, Szostak JW (1992) vitro selection of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355:850–852

    CAS  PubMed  Google Scholar 

  • El-Say KM, El-Sawy HS (2017) Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm 528:675–691

    CAS  PubMed  Google Scholar 

  • Eremeeva E, Fikatas A, Margamuljana L, Abramov M, Schols D, Groaz E, Herdewijn P (2019) Highly stable hexitol based XNA aptamers targeting the vascular endothelial growth factor. Nucleic Acid Res 47:4927–4939

    CAS  PubMed  Google Scholar 

  • Fang X, Tan W (2010) Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res 43:48–57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira CSM, Matthews CS, Missailidis S (2006) DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumor Biol 27:289–301

    CAS  Google Scholar 

  • Ferreira-Bravo AI, Cozens C, Holliger P, DeStefano JJ (2015) Selection of 2′-deoxy-2′-fluoroarabinonucleotide (FANA) aptamers that bind HIV-1 reverse transcriptase with picomolar affinity. Nucleic Acid Res 43:9587–9599

    CAS  Google Scholar 

  • Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 64:866–884

    CAS  PubMed  Google Scholar 

  • Gilbert BA, Sha M, Wathen ST, Rando RR (1997) RNA aptamers that specifically bind to a K ras-derived farnesylated peptide. Bioorg Med Chem 5:1115–1122

    CAS  PubMed  Google Scholar 

  • Golden MC, Collins BD, Willis MC, Koch TH (2000) Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers. J biotechnol 81:167–178

    CAS  PubMed  Google Scholar 

  • Gopinath SCB (2007) Methods developed for SELEX. Anal Bioanal Chem 387:171–182

    CAS  PubMed  Google Scholar 

  • Goringer HU, Adler A, Forster N, Homann M (2008) Post-SELEX chemical optimization of a trypanosome-specific RNA aptamer. Comb Chem High Throughput Screen 11:16–23

    PubMed  Google Scholar 

  • Gronewold TMA, Baumgartner A, Hierer J, Baumgartner A, Hierer J, Sierra S, Blind M, Schäfer F, Blümer J, Tillmann T, Kiwitz A, Kaiser R, Zabe-Kühn M (2009) Kinetic binding analysis of aptamers targeting HIV-1 proteins by a combination of a microbalance array and mass spectrometry (MAMS). J Prot Res 8:3568–3577

    CAS  Google Scholar 

  • Han SR, Lee S-W (2013) In vitro selection of RNA aptamer specific to salmonella typhimurium. J Microbiol Biotechnol 23:878–884

    CAS  PubMed  Google Scholar 

  • Hasegawa H, Sode K, Ikebukuro K (2008) Selection of DNA aptamers against VEGF(165) using a protein competitor and the aptamer blotting method. Biotechnol Lett 30:829–834

    CAS  PubMed  Google Scholar 

  • Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287:820–825

    CAS  PubMed  Google Scholar 

  • Hianik T, Ostatna V, Sonlajtnerova M, Grman I (2007) Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. Bio-electrochemistry 70:127–133

    CAS  Google Scholar 

  • Hicke BJ, Marion C, Chang YF, Gould T, Lynott CK, Parma D, Schmidt PG, Warren S (2001) Tenascin-C aptamers are generated using tumor cells and purified protein. J Biol Chem 276:48644–48654

    CAS  PubMed  Google Scholar 

  • Hicke BJ, Stephens AW, Gould T, Chang YF, Lynott CK, Heil J, Borkowski S, Hilger CS, Cook G, Warren S, Schmidt PG (2006) Tumor targeting by an aptamer. J Nuc Med 47:668–678

    CAS  Google Scholar 

  • Ho LC, Wu WC, Chang CY, Hsieh HH, Lee CH, Chang HT (2015) Aptamer-conjugated polymeric nanoparticles for the detection of cancer cells through “turn-on” retro-self-quenched fluorescence. Anal Chem 87:4925–4932

    CAS  PubMed  Google Scholar 

  • Homann M, Goringer HU (1999) Combinatorial selection of high affinity RNA ligands to live African trypanosomes. Nucleic Acids Res 27:2006–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoon S, Zhou B, Janda KD, Brenner S, Scolnick J (2011) Aptamer selection by high-throughput sequencing and informatic analysis. Biotechniques 51:413–416

    CAS  PubMed  Google Scholar 

  • Hoppe-Seyler F, Crnkovic-Mertens I, Tomai E, Butz K (2004) Peptide aptamers: specific inhibitors of protein function. Curr Mol Med 4:529–538

    CAS  PubMed  Google Scholar 

  • Hua X, Zhou Z, Yuan L, Liu S (2013) Selective collection and detection of MCF-7 breast cancer cells using aptamer-functionalized magnetic beads and quantum dots based nano-bio-probes. Anal Chim Acta 788:135–140

    CAS  PubMed  Google Scholar 

  • Huang D-B, Vu D, Cassiday LA, Zimmerman JM, Maher LJ III, Ghosh G (2003) Crystal structure of NF-κB (p50)2 complexed to a high-affinity RNA aptamer. Proc Nat Acad Sci (USA) 100:9268–9273

    CAS  Google Scholar 

  • Huang Y-F, Sefah K, Bamrungsap S, Chang H-T, Tan W (2008) Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods. Langmuir 24:11860–11865

    CAS  PubMed  Google Scholar 

  • Huang CJ, Lin HI, Shiesh SC, Lee GB (2010) Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX). Biosens Bioelectron 25(7):1761–1766

    CAS  PubMed  Google Scholar 

  • Hwang SY, Sun HY, Lee KH, Oh BH, Cha YJ, Kim BH, Yoo JY (2012) 5′-Triphosphate-RNA-independent activation of RIG-I via RNA aptamer with enhanced antiviral activity. Nucleic Acid Res 40:2724–2733

    CAS  PubMed  Google Scholar 

  • Jenison RD (1994) High-resolution molecular discrimination by RNA. Science 263:1425–1429

    CAS  PubMed  Google Scholar 

  • Kang KN, Lee YS (2012) RNA aptamers: a review of recent trends and applications in future. Trends in biotechnology. Springer, Berlin, Heidelberg, pp 153–169

    Google Scholar 

  • Kang H, O’Donoghue MB, Liu H, Tan W (2010) A liposome-based nanostructure for aptamer directed delivery. Chem Commun (Camb Eng) 46:249–251

    CAS  Google Scholar 

  • Kaur H, Yung LY (2012) Probing high affinity sequences of DNA aptamer against VEGF165. PLoS ONE 7:e31196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakami J, Imanaka H, Yokota Y, Sugimoto N (2000) In vitro selection of aptamers that act with Zn2+. J Inorg Biochem 82:197–206

    CAS  PubMed  Google Scholar 

  • Khan AA, Allemailem KS, Almatroodi SA, Almatroudi A, Rahmani AH (2020) Recent strategies towards the surface modification of liposomes: an innovative approach for different clinical applications. 3 Biotech 10:1–15

    Google Scholar 

  • Kratschmer C, Levy M (2018) Targeted delivery of auristatin-modified toxins to pancreatic cancer using aptamers. Mol Ther Nucleic Acids 10:227–236

    CAS  PubMed  Google Scholar 

  • Kruspe S, Hahn U (2014) An aptamer intrinsically comprising 5-fluoro-2’-deoxyuridine for targeted chemotherapy. Angew Chem Int Ed 53:10541–10544

    CAS  Google Scholar 

  • Lee YJ, Lee S-W (2012) Regression of hepatocarcinoma cells using RNA aptamer specific to alpha-fetoprotein. Biochem Biophy Res Commun 417:521–527

    CAS  Google Scholar 

  • Lee J-H, Canny MD, De Erkenez A, Krilleke D, Ng YS, Shima DT, Pardi A, Jucker F (2005) A therapeutic aptamer inhibits angiogenesis by specifically targeting the heparin binding domain of VEGF165. Proc Nat Acad Sci (USA) 102:18902–18907

    CAS  Google Scholar 

  • Lee SK, Park MW, Yang EG, Yu J, Jeong S (2005) An RNA aptamer that binds to the β-catenin interaction domain of TCF-1 protein. Biochem Biophys Res Commun 327:294–299

    CAS  PubMed  Google Scholar 

  • Lee HK, Choi YS, Park YA, Jeong S (2006) Modulation of oncogenic transcription and alternative splicing by β-catenin and an RNA aptamer in colon cancer cells. Can Res 66:10560–10566

    CAS  Google Scholar 

  • Lee JH, Jucker F, Pardi A (2008) Imino proton exchange rates imply an induced-fit binding mechanism for the VEGF165-targeting aptamer, Macugen. FEBS lett 582:1835–1839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leitner M, Poturnayova A, Lamprecht C, Weich S, Snejdarkova M, Karpisova I, Hianik T, Ebner A (2017) Characterization of the specific interaction between the DNA aptamer sgc8c and protein tyrosine kinase-7 receptors at the surface of T cells by biosensing AFM. Anal Bioanal Chem 409:2767–2776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lennarz S, Alich TC, Kelly T, Blind M, Beck H, Mayer G (2015) Selective aptamer-based control of intraneuronal signaling. Angew Chem Int Ed 54:5369–5373

    CAS  Google Scholar 

  • Leonhard V, Alasino RV, Bianco ID, Garro AG, Heredia V, Beltramo DM (2012) Self-assembled micelles of monosialogangliosides as nanodelivery vehicles for taxanes. J Controlled Release 162:619–627

    CAS  Google Scholar 

  • Levy-Nissenbaum E, Radovic-Moreno AF, Wang AZ, Langer R, Farokhzad OC (2008) Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol 26:442–449

    CAS  PubMed  Google Scholar 

  • Li S, Xu H, Ding H, Huang Y, Cao X, Yang G, Li J, Xie Z, Meng Y, Li X, Zhao Q (2009) Identification of an aptamer targeting hnRNP A1 by tissue slide-based SELEX. J Pathol 218:327–336

    CAS  PubMed  Google Scholar 

  • Li N, Nguyen HH, Byrom M, Ellington AD (2011) Inhibition of cell proliferation by an anti-EGFR aptamer. PLoS ONE 6:e20299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Hou J, Liu X, Guo Y, Wu Y, Zhang L, Yang Z (2014) Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. Biomaterials 35:3840–3850

    CAS  PubMed  Google Scholar 

  • Li XL, Zhang WY, Liu L, Zhu Z, Ouyang GL, An Y, Zhao CY, Yang CJ (2014) In vitro selection of DNA aptamers for metastatic breast cancer cell recognition and tissue imaging. Anal Chem 86:6596–6603

    CAS  PubMed  Google Scholar 

  • Li X, An Y, Jin J, Zhu Z, Hao L, Liu L, Shi Y, Fan D, Ji T, Yang CJ (2015) Evolution of DNA aptamers through in vitro metastatic-cell-based systematic evolution of ligands by exponential enrichment for metastatic cancer recognition and imaging. Anal Chem 87:4941–4948

    CAS  PubMed  Google Scholar 

  • Li FF, Lu J, Liu J, Liang C, Wang ML, Wang LY, Li DF, Yao HZ, Zhang QL, Wen J, Zhang ZK (2017) A water-soluble nucleolin aptamer-paclitaxel conjugate for tumor-specific targeting in ovarian cancer. Nat Commun 8:1390–1403

    PubMed  PubMed Central  Google Scholar 

  • Liao ZX, Chuang EY, Lin CC, Ho YC, Lin KJ, Cheng PY, Chen KJ, Wei HJ, Sung HW (2015) An AS1411 aptamer-conjugated liposomal system containing a bubble-generating agent for tumor-specific chemotherapy that overcomes multidrug resistance. J Control Release 208:42–51

    CAS  PubMed  Google Scholar 

  • Lipi F, Chen S, Chakravarthy M, Rakesh S, Veedu RN (2016) In vitro evolution of chemically-modified nucleic acid aptamers: pros and cons, and comprehensive selection strategies. RNA Biol 13:1232–1245

    PubMed  PubMed Central  Google Scholar 

  • Liu Z, Liu D, Wang L, Zhang J, Zhang N (2011) Docetaxel-loaded pluronic p123 polymeric micelles: in vitro and in vivo evaluation. Int J Mol Sci 12:1684–1696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Duan J-H, Song Y-M, Ma J, Wang FD, Lu X, Yang XD (2012) Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J Transl Med 10:148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long SB, Long MB, White RR, Sullenger BA (2008) Crystal structure of an RNA aptamer bound to thrombin. RNA 14:2504–2512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Liu J, Ali MM, Mahmood MAI, Labanieh L, Lu M, Iqbal SM, Zhang Q, Zhao W, Wan Y (2015) Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem Soc Rev 44:1240–1256

    CAS  PubMed  Google Scholar 

  • Ma Q, Lee D, Tan YQ, Wong G, Gao Z (2016) Synthetic genetic polymers: advances and applications. Polym Chem 7(33):5199–5216

    CAS  Google Scholar 

  • Mascini M (2009) Aptamers in bioanalysis. Wiley, Amsterdam

    Google Scholar 

  • Mastico RA, Talbot SJ, Stockley PG (1993) Multiple presentation of foreign peptides on the surface of an RNA-free spherical bacteriophage capsid. J Gen Virol 74:541–548

    CAS  PubMed  Google Scholar 

  • McKeague M, Foster A, Miguel Y, Giamberardino A, Verdin C, Chan JY, DeRosa MC (2013) Development of a DNA aptamer for direct and selective homocysteine detection in human serum. RSC Adv 3:24415–24422

    CAS  Google Scholar 

  • McNamara JO, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E, Sullenger BA, Giangrande PH (2006) Cell type specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 24:1005–1015

    CAS  PubMed  Google Scholar 

  • Mei H, Liao JY, Jimenez RM, Wang Y, Bala S, McCloskey C, Switzer C, Chaput JC (2018) Synthesis and evolution of a threose nucleic acid aptamer bearing 7-deaza-7-substituted guanosine residues. J Am Chem Soc 140:5706–5713

    CAS  PubMed  Google Scholar 

  • Mendonsa SD, Bowser MT (2004) In vitro evolution of functional DNA using capillary electrophoresis. J Am Chem Soc 126:20–21

    CAS  PubMed  Google Scholar 

  • Meng L, Sefah K, O’Donoghue MB, Zhu GZ, Shangguan DH, Noorali A, Chen Y, Zhou L, Tan WH (2010) Silencing of PTK7 in colon cancer cells: caspase-10-dependent apoptosis via mitochondrial pathway. PLoS ONE 5:e14018–e14029

    PubMed  PubMed Central  Google Scholar 

  • Miao Z, Westhof E (2017) RNA structure: advances and assessment of 3D structure prediction. Annu Rev Biophys 46:483–503

    CAS  PubMed  Google Scholar 

  • Min K, Cho M, Han SY, Shim YB, Ku J, Ban C (2008) A simple and direct electrochemical detection of interferon-γ using its RNA and DNA aptamers. Biosens Bioelectron 23:1819–1824

    CAS  PubMed  Google Scholar 

  • Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2:282–289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy MB, Fuller ST, Richardson PM, Doyle SA (2003) An improved method for the in vitro evolution of aptamers and applications in protein detection and purification. Nuc Acid Res 31:e110

    Google Scholar 

  • Ng EW, Shima DT, Calias P, Cunningham ET, Guyer DR, Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5:123–132

    CAS  PubMed  Google Scholar 

  • Ninomiya K, Kaneda K, Kawashima S, Miyachi Y, Ogino C, Shimizu N (2013) Cell-SELEX based selection and characterization of DNA aptamer recognizing human hepatocarcinoma. Bioorg Med Chem Lett 23:1797–1802

    CAS  PubMed  Google Scholar 

  • Nitsche A, Kurth A, Dunkhorst A, Pänke O, Sielaff H, Junge W, Muth D, Scheller F, Stöcklein W, Dahmen C, Pauli G (2007) One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX. BMC Biotechnol 7:48

    PubMed  PubMed Central  Google Scholar 

  • Niu WJ, Chen XG, Tan WH, Veige AS (2016) N-heterocyclic carbene-Gold(I) complexes conjugated to a leukemia-specific DNA aptamer for targeted drug delivery. Angew Chem Int Ed 55:8889–8893

    CAS  Google Scholar 

  • O’Codnnell D, Koenig A, Jennings S, Hicke B, Han HL, Fitzwater T, Chang YF, Varki N, Parma D, Varki A (1996) Calcium dependent oligonucleotide antagonists specific for l-selectin. Proc Nat Acad Sci (USA) 93:5883–5887

    Google Scholar 

  • O’Donoghue MB (2010) A liposome-based nanostructure for aptamer directed delivery. Chem Commun 46:249–251

    Google Scholar 

  • Ohuchi SP, Ohtsu T, Nakamura Y (2006) Selection of RNA aptamers against recombinant transforming growth factor-β type III receptor displayed on cell surface. Biochimie 88:897–904

    CAS  PubMed  Google Scholar 

  • Orava EW, Cicmil N, Gariepy J (2010) Delivering cargoes into cancer cells using DNA aptamers targeting internalized surface portals. BBA-Biomembr 1798:2190–2200

    CAS  Google Scholar 

  • Osborne SE, Matsumura I, Ellington AD (1997) Aptamers as therapeutic and diagnostic reagents: problems and prospects. Curr Opin Chem Biol 1:5–9

    CAS  PubMed  Google Scholar 

  • Ouellet E, Foley JH, Conway EM, Haynes C (2015) Hi-Fi SELEX: a high-fidelity digital-PCR based therapeutic aptamer discovery platform. Biotechnol Bioeng 112(8):1506–1522

    CAS  PubMed  Google Scholar 

  • Pagratis NC, Bell C, Chang YF, Jennings S, Fitzwater T, Jellinek D, Dang C (1997) Potent 2ʹ-amino- and 2-fluoro-2-deoxyribonucleotide RNA inhibitors of keratinocyte growth factor. Nat Biotechnol 15:68–73

    CAS  PubMed  Google Scholar 

  • Peng L, Stephens BJ, Bonin K, Cubicciotti R, Guthold M (2007) A combined atomic force/fluorescence microscopy technique to select aptamers in a single cycle from a small pool of random oligonucleotides. Micros Res Tech 70:372–381

    CAS  Google Scholar 

  • Phillips JA, Lopez-Colon D, Zhu Z, Xu Y, Tan W (2008) Applications of aptamers in cancer cell biology. Anal Chim Acta 621:101–108

    CAS  PubMed  Google Scholar 

  • Pinheiro VB, Holliger P (2012) The XNA world: progress towards replication and evolution of synthetic genetic polymers. Curr Opin Chem Biol 16:245–252

    CAS  PubMed  Google Scholar 

  • Pinheiro VB, Holliger P (2014) Towards XNA nanotechnology: new materials from synthetic genetic polymers. Trends Biotechnol 32(6):321–328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plapied L, Duhem N, des Rieux A, Preat V (2011) Fate of polymeric nanocarriers for oral drug delivery. Curr Opin Colloid Interface Sci 16:228–237

    CAS  Google Scholar 

  • Prakash TP (2011) An overview of sugar-modified oligonucleotides for antisense therapeutics. Chem Biodiver 8:1616–1641

    CAS  Google Scholar 

  • Radom F, Jurek PM, Mazurek MP, Otlewski J, Jelen F (2013) Aptamers: molecules of great potential. Biotechnol Adv 31:1260–1274

    CAS  PubMed  Google Scholar 

  • Rangel AE, Chen Z, Ayele TM, Heemstra JM (2018) In vitro selection of an XNA aptamer capable of small-molecule recognition. Nucleic Acid Res 46:8057–8068

    CAS  PubMed  Google Scholar 

  • Ravelet C, Grosset C, Peyrin E (2006) Liquid chromatography, electrochromatography and capillary electrophoresis applications of DNA and RNA aptamers. J Chromat A 1117:1–10

    CAS  Google Scholar 

  • Rentmeister A, Bill A, Wahle T, Walter J, Famulok M (2006) RNA aptamers selectively modulate protein recruitment to the cytoplasmic domain of β-secretase BACE1 in vitro. RNA 12:1650–1660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rohloff JC, Gelinas AD, Jarvis TC, Ochsner UA, Schneider DJ, Gold L, Janjic N (2014) Nucleic acid ligands with protein-like side chains: modified aptamers and their use as diagnostic and therapeutic agents. Mol Ther Nucleic Acids 3:201

    Google Scholar 

  • Rozenblum GT, Lopez VG, Vitullo AD, Radrizzani M (2016) Aptamers: current challenges and future prospects. Expert Opin Drug Dis 11:127–135

    CAS  Google Scholar 

  • Rui M, Xin Y, Li R, Ge Y, Feng C, Xu X (2017) Targeted biomimetic nanoparticles for synergistic combination chemotherapy of paclitaxel and doxorubicin. Mol Pharmaceut 14:107–123

    CAS  Google Scholar 

  • Ryou SM, Kim JM, Yeom JH, Hyun S, Kim S, Han MS, Kim SW, Bae J, Rhee S, Lee K (2011) Gold nanoparticle-assisted delivery of small, highly structured RNA into the nuclei of human cells. Biochem Biophy Res Commun 416:178–183

    CAS  Google Scholar 

  • Rytting E, Nguyen J, Wang X, Kissel T (2008) Biodegradable polymeric nanocarriers for pulmonary drug delivery. Expert Opin Drug Del 5:629–639

    CAS  Google Scholar 

  • Sefah K, Shangguan D, Xiong X, O’donoghue MB, Tan W (2010) Development of DNA aptamers using cell-SELEX. Nat Protoc 5:1169

    CAS  PubMed  Google Scholar 

  • Shigdar S, Lin J, Yu Y, Pastuovic M, Wei M, Duan W (2011) RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule. Cancer sci 102:991–998

    CAS  PubMed  Google Scholar 

  • Shoji A, Kuwahara M, Ozaki H, Sawai H (2007) Modified DNA aptamer that binds the (R)-isomer of a thalidomide derivative with high enantioselectivity. J Am Chem Soc 129:1456–1464

    CAS  PubMed  Google Scholar 

  • Singer BS, Shtatland T, Brown D, Gold L (1997) Libraries for genomic SELEX. Nucleic Acids Res 25(4):781–786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SK, Koshkin AA, Wengel J, Nielsen P (1998) LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition. Chem Commun 4:455–456

    Google Scholar 

  • Song YL, Zhu Z, An Y, Zhang WT, Zhang HM, Liu D, Yu CD, Duan W, Yang CJ (2013) Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal Chem 85:4141–4149

    CAS  PubMed  Google Scholar 

  • Soukup GA, Emilsson GA, Breaker RR (2000) Altering molecular recognition of RNA aptamers by allosteric selection. J Mol Biol 298:623–632

    CAS  PubMed  Google Scholar 

  • Soundararajan S, Chen W, Spicer EK, Courtenay-Luck N, Fernandes DJ (2008) The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res 68:2358–2365

    CAS  PubMed  Google Scholar 

  • Soundararajan S, Wang L, Sridharan V, Chen W, Courtenay-Luck N, Jones D, Spicer EK, Fernandes DJ (2009) Plasma membrane nucleolin is a receptor for the anticancer aptamer AS1411 in MV4-11 leukemia cells. Mol Pharm 76:984–991

    CAS  Google Scholar 

  • Stein CA, Castanotto D (2017) FDA-approved oligonucleotide therapies in 2017. Mol Ther 25:1069–1075

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stoltenburg R, Reinemann C, Strehlitz B (2005) FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal Bioanal Chem 383:83–91

    CAS  PubMed  Google Scholar 

  • Stoltenburg R, Nikolaus N, Strehlitz B (2012) Capture-SELEX: selection of DNA aptamers for aminoglycoside antibiotics. J Anal Methods Chem 2012:1–14

    Google Scholar 

  • Sun H, Su J, Meng Q, Yin Q, Chen L, Gu W, Zhang P, Zhang Z, Yu H, Wang S, Li Y (2016) Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv Mater 28:9581–9588

    CAS  PubMed  Google Scholar 

  • Sundaram P, Kurniawan H, Byrne ME, Wower J (2013) Therapeutic RNA aptamers in clinical trials. Eur J Pharmaceut Sci 48:259–271

    CAS  Google Scholar 

  • Takahashi M, Sakota E, Nakamura Y (2016) The efficient cell-SELEX strategy, Icell-SELEX, using isogenic cell lines for selection and counter-selection to generate RNA aptamers to cell surface proteins. Biochimie 131:77–84

    CAS  PubMed  Google Scholar 

  • Tan Y, Shi YS, Wu XD, Liang HY, Gao YB, Li SJ, Zhang XM, Wang F, Gao TM (2013) DNA aptamers that target human glioblastoma multiforme cells overexpressing epidermal growth factor receptor variant III in vitro. Acta Pharmacol Sin 34:1491–1498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tao W, Zeng X, Wu J, Zhu X, Yu X, Zhang X, Zhang J, Liu G, Mei L (2016) Polydopamine-based surface modification of novel nanoparticle-aptamer bioconjugates for in vivo breast cancer targeting and enhanced therapeutic effects. Theranostics 6:470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tolle F, Mayer G (2013) Dressed for success–applying chemistry to modulate aptamer functionality. Chem Sci 4:60–67

    CAS  Google Scholar 

  • Tolle F, Brandle GM, Matzner D, Mayer G (2015) A versatile approach towards nucleobase-modified aptamers. Angew Chem Int Ed 54:10971–10974

    CAS  Google Scholar 

  • Torres LL, Pinheiro VB (2018) Xenobiotic nucleic acid (XNA) synthesis by Phi29 DNA polymerase. Curr Protoc Chem Biol 10(2):e41

    PubMed  Google Scholar 

  • Tsukioka Y, Matsumura Y, Hamaguchi T, Koike H, Moriyasu F, Kakizoe T (2002) Pharmaceutical and biomedical differences between micellar doxorubicin (NK911) and liposomal doxorubicin (Doxil). Jpn J Cancer Res 93:1145–1153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker WO, Shum KT, Tanner JA (2012) G-quadruplex DNA aptamers and their ligands: structure, function and application. Curr Pharmaceut Design 18:2014–2026

    CAS  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    CAS  PubMed  Google Scholar 

  • Ulrich H (2006) RNA aptamers: from basic science towards therapy. RNA towards medicine. Springer, Berlin, Heidelberg, pp 305–326

    Google Scholar 

  • Ulrich H, Ippolito JE, Pagan OR, Eterovic VA, Hann RM, Shi H, Lis JT, Eldefrawi ME, Hess GP (1998) In vitro selection of RNA molecules that displace cocaine from the membrane bound nicotinic acetylcholine receptor. Proc Nat Acad Sci (USA) 95:14051–14056

    CAS  Google Scholar 

  • Ulrich H, Martins AHB, Pesquero JB (2004) RNA and DNA aptamers in cytomics analysis. Cytometry Part A 59:220–231

    Google Scholar 

  • Urata H, Ogura E, Shinohara K, Ueda Y, Akagi M (1992) Synthesis and properties of mirror-image DNA. Nucleic Acids Res 20:3325–3332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vandghanooni S, Eskandani M, Barar J, Omidi Y (2018) AS1411 aptamer-decorated cisplatin-loaded poly (lactic-co-glycolic acid) nanoparticles for targeted therapy of miR-21-inhibited ovarian cancer cells. Nanomedicine 13:2729–2758

    CAS  PubMed  Google Scholar 

  • Vater A, Jarosch F, Buchner K, Klussmann S (2003) Short bioactive Spiegelmers to migraine-associated calcitonin gene-related peptide rapidly identified by a novel approach: tailored-SELEX. Nucleic Acids Res 31:130

    Google Scholar 

  • Wan J, Ye L, Yang XH, Guo QP, Wang KM, Huang ZX, Tan YY, Yuan BY, Xie Q (2015) Cell-SELEX based selection and optimization of DNA aptamers for specific recognition of human cholangiocarcinoma QBC-939 cells. Analyst 140:5992–5997

    CAS  PubMed  Google Scholar 

  • Wang E, Wu R, Niu HY, Cai J (2011) Improving the stability of aptamers by chemical modification. Curr Med Chem 18:4126–4138

    CAS  PubMed  Google Scholar 

  • Wang P, Yang Y, Hong H, Zhang Y, Cai W, Fang D (2011) Aptamers as therapeutics in cardiovascular diseases. Curr Med Chem 18:4169–4174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Zhao J, Jiang T, Kwon YM, Lu H, Jiao P, Liao M, Li Y (2013) Selection and characterization of DNA aptamers for use in detection of avian influenza virus H5N1. J Virol Methods 189:362–369

    CAS  PubMed  Google Scholar 

  • Wang Q, Liu W, Xing Y, Yang X, Wang K, Jiang R, Wang P, Zhao Q (2014) Screening of DNA aptamers against myoglobin using a positive and negative selection units integrated microfluidic chip and its biosensing application. Anal Chem 86:6572–6579

    CAS  PubMed  Google Scholar 

  • Wang R, Zhu G, Mei L, Xie Y, Ma H, Ye M, Qing F-L, Tan W (2014) Automated modular synthesis of aptamer-drug conjugates for targeted drug delivery. J Am Chem Soc 136:2731–2734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Luo Y, Bing T, Chen Z, Lu M, Zhang N, Shangguan D, Gao X (2014) DNA aptamer evolved by cell-SELEX for recognition of prostate cancer. PLoS ONE 9:e100243

    PubMed  PubMed Central  Google Scholar 

  • Wang GQ, Maheshwari N, Eisenstein M, Arcila ML, Kosik KS, Soh HT (2014) Particle display: a quantitative screening method for generating high-affinity aptamers. Angew Chem Int Ed Engl 126:4896–4901

    Google Scholar 

  • Wang K, Yao H, Meng Y, Wang Y, Yan X, Huang R (2015) Specific aptamer- conjugated mesoporous silica–carbon nanoparticles for HER2-targeted chemo- photothermal combined therapy. Acta Biomat 16:196–205

    CAS  Google Scholar 

  • Wang X, Zhou X, Wang J, Cao Z, Zhang L, Tang R (2016) Acid-labile copolymer micelles cross-linked by a twin ortho ester cross-linking agent: synthesis, characterization, and evaluation. Macromol Chem Phys 217:2182–2190

    CAS  Google Scholar 

  • White RR, Sullenger BA, Rusconi CP (2000) Developing aptamers into therapeutics. J Clin Invest 106:929–934

    CAS  PubMed  PubMed Central  Google Scholar 

  • White R, Rusconi C, Scardino E, Wolberg A, Lawson J, Hoffman M, Sullenger B (2001) Generation of species cross-reactive aptamers using “toggle” SELEX. Mol Ther 4(6):567–573

    CAS  PubMed  Google Scholar 

  • Wilner SE, Wengerter B, Maier K, de Lourdes B, Magalhaes M, Del Amo DS, Pai S, Opazo F, Rizzoli SO, Yan A, Levy M (2012) An RNA alternative to human transferrin: a new tool for targeting human cells. Mol Ther Nucleic Acids 1:e21–e21

    PubMed  PubMed Central  Google Scholar 

  • Wolter O, Mayer G (2017) Aptamers as valuable molecular tools in neurosciences. J Neurosci 37:2517–2523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Curran JF (1999) An allosteric synthetic DNA. Nucleic Acids Res 27:1512–1516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Sefah K, Liu H, Wang R, Tan W (2010) DNA aptamer-micelle as an efficient detection/delivery vehicle toward cancer cells. Proc Natl Acad Sci USA 107:5–10

    CAS  PubMed  Google Scholar 

  • Wu X, Zhao Z, Bai H, Fu T, Yang C, Hu X, Liu Q, Champanhac C, Teng IT, Ye M, Tan W (2015) DNA aptamer selected against pancreatic ductal adenocarcinoma for in vivo imaging and clinical tissue recognition. Theranostics 5:985–994

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao SJ, Hu PP, Xiao GF, Wang Y, Liu Y, Huang CZ (2012) Label-free detection of prion protein with its DNA aptamer through the formation of T-Hg2+-T configuration. J Phys Chem B 116:9565–9569

    CAS  PubMed  Google Scholar 

  • Xing H, Hwang K, Li J, Torabi SF, Lu Y (2014) DNA aptamer technology for personalized medicine. Curr Opin Chem Eng 4:79–87

    PubMed  PubMed Central  Google Scholar 

  • Xu W, Ellington AD (1996) Anti-peptide aptamers recognize amino acid sequence and bind a protein epitope. Proc Nat Acad Sci (USA) 93:7475–7480

    CAS  Google Scholar 

  • Xu JH, Teng IT, Zhang LQ, Delgado S, Champanhac C, Cansiz S, Wu CC, Shan H, Tan WH (2015) Molecular recognition of human liver cancer cells using DNA aptamers generated via cell-SELEX. PLoS ONE 10:e0125863

    PubMed  PubMed Central  Google Scholar 

  • Yan X, Gao X, Zhang Z (2004) Isolation and characterization of 2′-amino-modified RNA aptamers for human TNFα. Genom Proteom Bioinform 2:32–42

    CAS  Google Scholar 

  • Yang R, Wei T, Goldberg H, Wang W, Cullion K, Kohane DS (2017) Getting drugs across biological barriers. Adv Mater 2017:29

    Google Scholar 

  • Yin J, He X, Wang K, Qing Z, Wu X, Shi H, Yang X (2012) One-step engineering of silver nanoclusters–aptamer assemblies as luminescent labels to target tumor cells. Nanoscale 4:110–112

    CAS  PubMed  Google Scholar 

  • Ylera F, Lurz R, Erdmann VA, Furste JP (2002) Selection of RNA aptamers to the Alzheimer’s disease amyloid peptide. Biochem Biophy Res Commun 290:1583–1588

    CAS  Google Scholar 

  • Yoo S, Huang KW, Reebye V, Spalding D, Przytycka TM, Wang YJ, Swiderski P, Li L, Armstrong B, Reccia I, Zacharoulis D (2017) Aptamer-drug conjugates of active metabolites of nucleoside analogs and cytotoxic agents inhibit pancreatic tumor cell growth. Mol Ther Nucleic Acids 17:80–88

    Google Scholar 

  • Zhang XJ, Zhang J, Ma YY, Pei XY, Liu QM, Lu B, Jin L, Wang JC, Liu J (2014) A cell-based single-stranded DNA aptamer specifically targets gastric cancer. Int J Biochem Cell Biol 46:1–8

    PubMed  Google Scholar 

  • Zhang J, Chen R, Fang X, Chen F, Wang Y, Chen M (2015) Nucleolin targeting AS1411 aptamer modified pH-sensitive micelles for enhanced delivery and antitumor efficacy of paclitaxel. Nano Res 8:201–218

    CAS  Google Scholar 

  • Zhang K, Liu M, Tong X, Sun N, Zhou L, Cao Y, Wang J, Zhang H, Pei R (2015) Aptamer-modified temperature-sensitive liposomal contrast agent for magnetic resonance imaging. Biomacromol 16:2618–2623

    CAS  Google Scholar 

  • Zhang Y, Yu Z, Jiang F, Fu P, Shen J, Wu W, Li J (2015) Two DNA aptamers against avian influenza H9N2 virus prevent viral infection in cells. PLoS ONE 10:e0123060

    PubMed  PubMed Central  Google Scholar 

  • Zhang R, Wang SB, Wu WG, Kankala RK, Chen AZ, Liu YG, Fan JQ (2017) Co-delivery of doxorubicin and AS1411 aptamer by poly (ethylene glycol)-poly (β-amino esters) polymeric micelles for targeted cancer therapy. J Nanoparticle Res 19:224

    Google Scholar 

  • Zhao F, Zhou J, Su X, Wang Y, Yan X, Jia S, Du B (2017) A smart responsive dual aptamers-targeted bubble-generating nanosystem for cancer triplex therapy and ultrasound imaging. Small 13:20

    Google Scholar 

  • Zhou J, Rossi JJ (2009) The therapeutic potential of cell-internalizing aptamers. Curr Top Med Chem 9:1144–1157

    CAS  PubMed  Google Scholar 

  • Zhou J, Rossi J (2017) Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov 16:181

    CAS  PubMed  Google Scholar 

  • Zhou W, Han WF, Landree LE, Thupari JN, Pinn ML, Bililign T, Kim EK, Vadlamudi A, Medghalchi SM, El Meskini R, Ronnett GV (2007) Fatty acid synthase inhibition activates AMP-activated protein kinase in SKOV3 human ovarian cancer cells. Cancer Res 67:2964–2971

    CAS  PubMed  Google Scholar 

  • Zhou J, Li H, Li S, Zaia J, Rossi JJ (2008) Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol Ther 16:1481–1489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu G, Meng L, Ye M, Yang L, Sefah K, O’Donoghue MB, Chen Y, Xiong X, Huang J, Song E, Tan W (2012) Self-assembled aptamer-based drug carriers for bispecific cytotoxicity to cancer cells. Chem Asian J 7:1630–1636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu G, Ye M, Donovan MJ, Song E, Zhao Z, Tan W (2012) Nucleic acid aptamers: an emerging frontier in cancer therapy. Chem Commun 48:10472–10480

    CAS  Google Scholar 

  • Zhu GZ, Zheng J, Song EQ, Donovan M, Zhang KJ, Liu C, Tan WH (2013) Self-assembled, aptamer tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc Natl Acad Sci USA 110:7998–8003

    CAS  PubMed  Google Scholar 

  • Zhu J, Huang H, Dong S, Ge L, Zhang Y (2014) Progress in aptamer-mediated drug delivery vehicles for cancer targeting and its implications in addressing chemotherapeutic challenges. Theranostics 4:931–944

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Liu G, Kai M (2015) DNA aptamers in the diagnosis and treatment of human diseases. Molecules 20(12):20979–20997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuo Z, Yu Y, Wang M, Li J, Zhang Z, Liu J, Wu X, Lu A, Zhang G, Zhang B (2017) Recent advances in SELEX technology and aptamer applications in biomedicine. Int J Mol Sci 18(10):2142

    PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KSA, AAK, and AA have contributed to the concept, design, diagrams and information collection of the work. MAA and GTB have reviewed it thoroughly. FA and AHR have contributed in reviewing and final approval of the work.

Corresponding author

Correspondence to Amjad Ali Khan.

Ethics declarations

Conflict of interest

All the authors state that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allemailem, K.S., Almatroudi, A., Alsahli, M.A. et al. Recent advances in understanding oligonucleotide aptamers and their applications as therapeutic agents. 3 Biotech 10, 551 (2020). https://doi.org/10.1007/s13205-020-02546-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02546-1

Keywords

Navigation