Skip to main content
Log in

Optimization of organic solvent-tolerant lipase production by Acinetobacter sp. UBT1 using deoiled castor seed cake

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Organic solvent-tolerant lipase-producing microorganisms were isolated from petrol spilled soil. From ten morphologically distinct lipase-producing bacterial isolates, highest amount of lipase-producing isolate UBT1 was identified as Acinetobacter sp. using 16S rRNA gene sequencing (NCBI Accession No: MH879815). An increase in lipase production from 42 U/mL to 243 U/mL was obtained when different deoiled seed cakes were supplemented instead of olive oil in the medium. Further optimization of media components by the statistical approach assisted in discerning the main influencing media components and their optimum concentrations. Nine components glucose, castor seedcake, potassium nitrate, gum arabic, calcium chloride, magnesium sulphate, potassium di-hydrogen phosphate, dipotassium hydrogen phosphate, and ferric chloride were selected for Plackett–Burman design. The optimum concentrations of three significant selected components for the lipase production were found to be 0.025 gm% glucose, 0.002 gm% calcium chloride, and 0.2 gm% potassium di-hydrogen phosphate as determined by Response Surface Methodology. Increase in lipase production with 292.29 U/mL was achieved in the media containing optimized components and 2 gm% deoiled castor seed cake. Purification studies with ammonium sulphate precipitation, dialysis, and gel permeation chromatography resulted in 77.54% recovery with 5.77-fold partially purified lipase. The residual activity of lipase in 50 and 75% concentration of n-hexane among other solvents after 24 h was 105.05 and 90.42%, respectively, indicating its solvent tolerance. The present study reports the isolation of organic solvent-tolerant lipase-producing Acinetobacter sp. UBT1, optimization of the culture media for lipase production using the deoiled castor seed cake, and its partial purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed EH, Raghavendra T, Madamwar D (2010). An alkaline lipase from organic solvent tolerant Acinetobacter sp. EH28: application for ethyl caprylate synthesis. Bioresour Technol, 101(10), 3628–3634. https://doi.org/https://doi.org/10.1016/j.biortech.2009.12.107

  • Allimoun MO, Ananzeh MR, Khleifat KM (2015). Screening selection and optimization of extracellular methanol and ethanol tolerant lipase from Acinetobacter sp. K5b4. Int J Biosci, 6(10), 44–56. http://dx.doi.org/https://doi.org/10.12692/ijb/6.10.44-56

  • Al-Limoun MO, Khleifat KM, Alsharafa KY, Qaralleh HN, Alrawashdeh SA (2019). Purification and characterization of a mesophilic organic solvent tolerant lipase produced by Acinetobacter sp. K5b4. Biocatal Biotranfor, 37(2), 139–151. https://doi.org/https://doi.org/10.1080/10242422.2018.1506445

  • Awad GE, Mostafa H, Danial EN, Abdelwahed NA, Awad HM (2015) Enhanced production of thermostable lipase from Bacillus cereus ASSCRC-P1 in waste frying oil based medium using statistical experimental design. J Appl Pharm Sci 5:7–15. https://doi.org/10.7324/JAPS.2015.50902

    Article  CAS  Google Scholar 

  • Bose A, Keharia H (2013) Production, characterization and applications of organic solvent tolerant lipase by Pseudomonas aeruginosa AAU2. Biocatal Agri Biotechnol 2(3):255–266. https://doi.org/10.1016/j.bcab.2013.03.009

    Article  Google Scholar 

  • Casas-Godoy L, Duquesne S, Bordes F, Sandoval G, Marty A (2012). Lipases: An overview. In Lipases and phospholipases (pp. 3–30). Humana Press. https://doi.org/https://doi.org/10.1007/978-1-61779-600-5_1

  • Chen SJ, Cheng CY, Chen TL (1998) Production of an alkaline lipase by Acinetobacter radioresistens. J Ferment Bioeng 86(3):308–312. https://doi.org/10.1016/S0922-338X(98)80135-9

    Article  CAS  Google Scholar 

  • Furini G, Berger JS, Campos JA, SAND ST, Germani JC, (2018) Production of lipolytic enzymes by bacteria isolated from biological effluent treatment systems. An Acad Bras Ciênc 90(3):2955–2965. https://doi.org/10.1590/0001-3765201820170952

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves Filho D, Silva AG, Guidini CZ (2019) Lipases: Sources, immobilization methods, and industrial applications. Appl Microbiol Biotechnol 103(18):7399–7423. https://doi.org/10.1007/s00253-019-10027-6

    Article  CAS  Google Scholar 

  • Gupta N, Sahai V, Gupta R (2007) Alkaline lipase from a novel strain Burkholderia multivorans: Statistical medium optimization and production in a bioreactor. Process Biochem 42(4):518–526. https://doi.org/10.1016/j.procbio.2006.10.006

    Article  CAS  Google Scholar 

  • Gururaj P, Ramalingam S, Devi GN, Gautam P (2016). Process optimization for production and purification of a thermostable, organic solvent tolerant lipase from Acinetobacter sp. AU07. Braz J Microbiol, 47(3), 647–657. https://doi.org/https://doi.org/10.1016/j.bjm.2015.04.002

  • Habibollahi H, Salehzadeh A (2018). Isolation, optimization, and molecular characterization of a lipase producing bacterium from oil contaminated soils. Pollut, 4(1), 119–128. https://doi.org/https://doi.org/10.22059/POLL.2017.238410.297

  • Haque E, Velmurugane J, Nagarajan J (2019). Media optimization for lipase production from Pseudomonas otitidis G5. J Adv Sci Res Manag, 4(7).

  • Hong MC, Chang MC (1998) Purification and characterization of an alkaline lipase from a newly isolated Acinetobacter radioresistens CMC-1. Biotechnol Lett 20(11):1027–1029. https://doi.org/10.1023/A:1005407005371

    Article  CAS  Google Scholar 

  • Ilesanmi OI, Adekunle AE, Omolaiye JA, Olorode EM, Ogunkanmi AL (2020) Isolation, optimization and molecular characterization of lipase producing bacteria from contaminated soil. Sci Afr 8:e00279

    Google Scholar 

  • Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16(9):396–403. https://doi.org/10.1016/S0167-7799(98)01195-0

    Article  CAS  PubMed  Google Scholar 

  • Jagtap S, Gore S, Yavankar S, Pardesi K, Chopade B (2010) Optimization of medium for lipase production by Acinetobacter haemolyticus from healthy human skin. Indian J Exp Biol 48(9):936–941

    CAS  PubMed  Google Scholar 

  • Jain R, Naik SN (2018) Adding value to the oil cake as a waste from oil processing industry: Production of lipase in solid state fermentation. Biocatal Agri Biotechnol 15:181–184. https://doi.org/10.1016/j.bcab.2018.06.010

    Article  Google Scholar 

  • Kapoor M, Gupta MN (2012) Lipase promiscuity and its biochemical applications. Process Biochem 47(4):555–569. https://doi.org/10.1016/j.procbio.2012.01.011

    Article  CAS  Google Scholar 

  • Khatape A, Chavan S, Khade S, Doiphode N (2015) Isolation and identification of lipid degrading microorganisms, optimization of medium and partial purification of the lipase enzyme. Int J Life Sci Res 3(1):99–103

    Google Scholar 

  • Khoramnia A, Ebrahimpour A, Beh BK, Lai OM (2011). Production of a solvent, detergent, and thermotolerant lipase by a newly isolated Acinetobacter sp. in submerged and solid-state fermentations. J Biomed Biotechnol, 2011.

  • Kumar S, Kikon K, Upadhyay A, Kanwar SS, Gupta R (2005) Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3. Protein Expr Purif 41(1):38–44. https://doi.org/10.1016/j.pep.2004.12.010

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Mahajan S, Kumar A, Singh D (2011) Identification of variables and value optimization for optimum lipase production by Bacillus pumilus RK31 using statistical methodology. New Biotechnol 28(1):65–71. https://doi.org/10.1016/j.nbt.2010.06.007

    Article  CAS  Google Scholar 

  • Kumar A, Dhar K, Kanwar SS, Arora PK (2016) Lipase catalysis in organic solvents: advantages and applications. Biol Proced Online 18(1):2

    Article  Google Scholar 

  • Li J, Shen W, Fan G, Li X (2018). Screening, purification and characterization of lipase from Burkholderia pyrrocinia B1213. 3 Biotech, 8(9), 387. https://doi.org/https://doi.org/10.1007/s13205-018-1414-9

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Masomian M, Rahman RNZRA, Salleh AB, Basri M (2010) A unique thermostable and organic solvent tolerant lipase from newly isolated Aneurinibacillus thermoaerophilus strain HZ: Physical factor studies. World J Microbiol Biotechnol 26(9):1693–1701. https://doi.org/10.1007/s11274-010-0347-1

    Article  CAS  Google Scholar 

  • Mohanasrinivasan V, Devi CS, Jayasmita D, Selvarajan E, Naine SJ (2018) Purification and characterization of extracellular lipase from Serratia marcescens VITSD2. Proc Natl Acad Sci India Sect B Biol Sci 88(1):373–381. https://doi.org/10.1007/s40011-016-0763-6

    Article  CAS  Google Scholar 

  • Noor I, Hasan M, Ramachandran K (2003) Effect of operating variables on the hydrolysis rate of palm oil by lipase. Process Biochem 39(1):13–20. https://doi.org/10.1016/S0032-9592(02)00263-7

    Article  CAS  Google Scholar 

  • Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33(4):305–325. https://doi.org/10.2307/2332195

    Article  Google Scholar 

  • Prajapati V, Patel H, Trivedi U, Patel K (2014) Kinetic and thermodynamic characterization of lipase produced by Cellulomonas flavigena UNP3. J Basic Microbol 54(9):976–983. https://doi.org/10.1002/jobm.201300065

    Article  CAS  Google Scholar 

  • Ruchi G, Anshu G, Khare SK (2008) Lipase from solvent tolerant Pseudomonas aeruginosa strain: Production optimization by response surface methodology and application. Bioresour Technol 99(11):4796–4802. https://doi.org/10.1016/j.biortech.2007.09.053

    Article  CAS  PubMed  Google Scholar 

  • Sadh PK, Duhan S, Duhan JS (2018) Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour Bioprocess 5(1):1. https://doi.org/10.1186/s40643-017-0187-z

    Article  Google Scholar 

  • Sahoo RK, Kumar M, Mohanty S, Sawyer M, Rahman PK, Sukla LB, Subudhi E (2018) Statistical optimization for lipase production from solid waste of vegetable oil industry. Prep Biochem Biotechnol 48(4):321–326. https://doi.org/10.1080/10826068.2018.1431785

    Article  CAS  PubMed  Google Scholar 

  • Sarac N, Ugur A (2016) A green alternative for oily wastewater treatment: lipase from Acinetobacter haemolyticus NS02-30. Desalin Water Treat 57(42):19750–19759. https://doi.org/10.1080/19443994.2015.1106346

    Article  CAS  Google Scholar 

  • Sarmah N, Revathi D, Sheelu G, Rani KY, Sridhar S, Mehtab V, Sumana C (2018) Recent advances on sources and industrial applications of lipases. Biotechnol Prog 34(1):5–28. https://doi.org/10.1002/btpr.2581

    Article  CAS  PubMed  Google Scholar 

  • Sharma S (2014) Kanwar SS (2014). Organic solvent tolerant lipases and applications, The Sci World J

    Google Scholar 

  • Sirisha E, Rajasekar N, Narasu ML (2010) Isolation and optimization of lipase producing bacteria from oil contaminated soils. Adv Biol Res 4(5):249–252

    CAS  Google Scholar 

  • Soleymani S, Alizadeh H, Mohammadian H, Rabbani E, Moazen F, Sadeghi HM, Rabbani M (2017) Efficient media for high lipase production: One variable at a time approach. Avicenna J Med Biotechnol 9(2):82

    PubMed  PubMed Central  Google Scholar 

  • Tembhurkar VR, Kulkarni MB, Peshwe SA (2012). Optimization of lipase production by Pseudomonas spp. in submerged batch process in shake flask culture. Sci Res Rep, 2(1), 46–50.

  • Veerapagu M, Narayanan AS, Ponmurugan K, Jeya KR (2013) Screening selection identification production and optimization of bacterial lipase from oil spilled soil. Asian J Pharm Clin Res 6(3):62–67

    Google Scholar 

  • Winkler UK, Stuckmann MARTINA (1979) Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol 138(3):663–670

    Article  CAS  Google Scholar 

  • Zheng C (2018). Growth characteristics and enzyme production optimization of lipase producing strain. IOP Publishing. In IOP Conference Series: Earth and Environmental Science 108(4), 042087.

Download references

Acknowledgements

Accession number: The 16S rRNA of the Acinetobacter sp. UBT1 have been submitted to the NCBI gene bank under accession number MH879815.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamlesh Patel.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, R., Prajapati, V., Trivedi, U. et al. Optimization of organic solvent-tolerant lipase production by Acinetobacter sp. UBT1 using deoiled castor seed cake. 3 Biotech 10, 508 (2020). https://doi.org/10.1007/s13205-020-02501-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02501-0

Keywords

Navigation