Skip to main content

Advertisement

Log in

Extension of life span and stress tolerance modulated by DAF-16 in Caenorhabditis elegans under the treatment of Moringa oleifera extract

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The present study was focused to isolate the bioactive compounds present in the leaves of Moringa oleifera which contains a high nutritional value. Furthermore, the research was aimed to evaluate the antioxidant, anti-aging, and anti-neurodegenerative properties of M. oleifera using the experimental model Caenorhabditis elegans. The separation of compounds from the crude extract and its identification was carried out through TLC, Column chromatography, UV absorption spectroscopy, and GC–MS. The compounds identified in most abundant fraction of column chromatography were [Phenol-2,4-bis(1,1-dimethylethyl)- phosphite (3:1)] and Tetratetracontane. The result suggests that the leaves extracts and column fraction were able to significantly extend the life span of the N2 wild-type strain of C. elegans. The most potent life span extending effect was displayed by the dichloromethane extract of leaves which was 21.73 ± 0.142 days compared to the control (16.55 ± 0.02 days). It could also extend the health span through improved physiological functions such as pharyngeal pumping, body bending, and reversal frequency with increased age. The treated worms were also exhibited improved resistance to thermal stress, oxidative stress, and reduced intracellular ROS accumulation. Moreover, the leaves extract could elicit neuroprotection as it could delay the paralysis in the transgenic strain of C. elegans ‘CL4176’ integrated with Aβ. Interestingly, The RNAi experiment demonstrated that the extended life span under the treatment of extracts and the compound was daf-16 dependent. In transgenic C. elegans TJ356, the DAF-16 transcription factor was localized in the nucleus under the stress conditions, further supported the involvement of the daf-16 gene in longevity. Overall, the study suggests the potential of M. oleifera as a dietary supplement and alternative medicine to defend against oxidative stress and aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

M. oleifera :

Moringa oleifera

C. elegans :

Caenorhabditis elegans

La:

Leaves aqueous extract

Lm:

Leaves methanol extract

Ld:

Leaves dichloromethane extract

Le:

Leaves ethyl acetate extract

Lh:

Leaves n-hexane extract

TLC:

Thin layer chromatography

M:

Methanol

H:

Hexane

EA:

Ethyl acetate

DCM:

Dichloromethane

GC–MS:

Gas chromatography–mass spectrometry

RT:

Retention time

NGM:

Nematode growth medium agar plate

L1:

Larval stage 1

L4:

Larval stage 4

H2O2 :

Hydrogen peroxide

DCFH-DA:

2’,7’-dichlorofluorescein diacetate

ROS:

Reactive oxygen species

Aβ:

Amyloid-beta

Rf:

Retardation factor

h:

Hour/hours

PC:

Positive control

NC:

Negative control

PQ:

Paraquat

GFP:

Green fluorescent protein

References

  • Ayurvedic Pharmacopoeia Committee (2001) Ayurvedic Pharmacopoeia of India. Government of India, Ministry of Health and Family Welfare. Department of AYUSH, New Delhi. http://www.ayurveda.hu/api/API-Vol-2.pdf, http://www.ayurveda.hu/api/API-Vol-4.pdf

  • Baker K, Marcus CB, Huffman K et al (1998) Synthetic combined superoxide dismutase/catalase mimetics are protective as a delayed treatment in a rat stroke model: a key role for reactive oxygen species in ischemic brain injury. J Pharmacol Exp Ther 284(1):215–221

    CAS  PubMed  Google Scholar 

  • Bakre AG, Aderibigbe AO, Ademowo OG (2013) Studies on neuropharmacological profile of ethanol extract of Moringa oleifera leaves in mice. J Ethnopharmacol 149(3):783–789

    CAS  PubMed  Google Scholar 

  • Bharali R, Tabassum J, Azad MR (2003) Chemomodulatory effect of Moringa oleifera Lam on hepatic carcinogen-metabolizing enzymes, antioxidant parameters and skin papillomagenesis in mice. Asian Pac J Cancer Prev 4:131–139

    PubMed  Google Scholar 

  • Bradley E, Coulier L (2007) An investigation into the reaction and breakdown products from starting substances used to produce food contact plastics. London: Central Science Laboratory FD07/01

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caceres A, Cabrera O, Morales O et al (1991) Pharmacological properties of Moringa oleifera. 1: preliminary screening for antimicrobial activity. J Ethnopharmacol 33:213–216

    CAS  PubMed  Google Scholar 

  • Cai WJ, Huang JH, Zhang SQ (2011) Icariin and its derivative icariside II extend healthspan via insulin/IGF-1 pathway in C. elegans. PloS One 6(12):e28835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandasekar S, Malathi R (2016) Identification of bioactive constituents in Moringa concanensis leaf using gas chromatography and mass spectrometry. Int J Curr Adv Res 5:1071–1073

    Google Scholar 

  • Chaubey MG, Patel SN, Rastogi RP et al (2020) Cyanobacterial pigment protein allophycocyanin exhibits longevity and reduces Aβ-mediated paralysis in C. elegans: complicity of FOXO and NRF2 ortholog DAF-16 and SKN-1. 3 Biotech 10(8):1–11. https://doi.org/10.1007/s13205-020-02314-1

    Article  Google Scholar 

  • Chavan UD, Amarowicz R (2013) Effect of various solvent systems on the extraction of phenolics, tannins, sugars from beach pea (Lathyrus maritimus L.). Int Food Res J 20(3):1139–1144

    CAS  Google Scholar 

  • Chiang WC, Tishkoff DX, Yang B et al (2012) C. elegans SIRT6/7 homolog SIR-2.4 promotes DAF-16 relocalization and function during stress. PLoS Genet 8(9):e1002948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conte JrD, MacNeil LT, Walhout AJ, Mello CC (2015) RNA Interference in Caenorhabditis elegans. Curr Protoc Mol Biol 109(1):26–3

  • Corsi AK, Wightman B, Chalfie M (2015) A transparent window into biology: a primer on Caenorhabditis elegans. Genetics 200(2):387–407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das D, Sahu D, Baruah D et al (2017) Moringa oleifera (Shigru): a miracle tree for its nutritional, ethnomedicinal and therapeutic importance. Int J Dev Res 7(11):16823–16827

    Google Scholar 

  • Dengg M, van Meel JC (2004) Caenorhabditis elegans as model system for rapid toxicity assessment of pharmaceutical compounds. J Pharmacol Toxicol Methods 50(3):209–214

    CAS  PubMed  Google Scholar 

  • Dillard CJ, German JB (2000) Phytochemicals: nutraceuticals and human health: a review. J Sci Food Agric 80:1744–1756

    CAS  Google Scholar 

  • Drake J, Link CD, Butterfield DA (2003) Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid β-peptide (1–42) in a transgenic Caenorhabditis elegans model. Neurobiol Aging 24(3):415–420

    CAS  PubMed  Google Scholar 

  • Fahey JW (2005) Moringa oleifera: a review of the medical evidence for its nutritional, therapeutic, and prophylactic properties. Part 1. Trees Life J 1(5):1–15

    Google Scholar 

  • Faizi S, Siddiqui B, Saleem R et al (1994) Isolation and structure elucidation of new nitrile and mustard oil glycosides from Moringa oleifera and their effect on blood pressure. J Nat Prod 57:1256–1261

    CAS  PubMed  Google Scholar 

  • Faizi S, Sumbul S, Versiani MA et al (2014) GC/GCMS analysis of the petroleum ether and dichloromethane extracts of Moringa oleifera roots. Asian Pac J Trop Biomed 4(8):650–654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806

    CAS  PubMed  Google Scholar 

  • Fraser AG, Kamath RS, Zipperlen P (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408(6810):325

    CAS  PubMed  Google Scholar 

  • Ganguly R, Guha D (2008) Alteration of brain monoamines & EEG wave pattern in rat model of Alzheimer’s disease & protection by Moringa oleifera. Indian J Med Res 128(6):744–751

    CAS  PubMed  Google Scholar 

  • Gourley BL, Parker SB, Jones BJ et al (2003) Cytosolic aconitase and ferritin are regulated by iron in Caenorhabditis elegans. J Biol Chem 278:3227–3234

    CAS  PubMed  Google Scholar 

  • Guarente L, Kenyon C (2000) Genetic pathways that regulate aging in model organisms. Nature 408(6809):255

    CAS  PubMed  Google Scholar 

  • Gupta SK, Kumar B, Srinivasan BP et al (2013) Retinoprotective effects of Moringa oleifera via antioxidant, anti-inflammatory, and anti-angiogenic mechanisms in streptozotocin-induced diabetic rats. J Ocul Pharmacol Ther 29(4):419–426

    Google Scholar 

  • Harman D (1992) Free radical theory of aging. Mutat Res DNAging 275(3–6):257–266

    CAS  Google Scholar 

  • Huang WJ, Zhang XIA, Chen WW (2016) Role of oxidative stress in Alzheimer’s disease. Biomed Rep 4(5):519–522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Im JS, Lee HN, Oh JW (2016) Moringa oleifera Prolongs Lifespan via DAF-16/FOXO Transcriptional Factor in Caenorhabditis elegans. Nat Prod Sci 22(3):201–208

    CAS  Google Scholar 

  • Iqbal S, Bhanger MI (2006) Effect of season and production location on antioxidant activity of Moringa oleifera leaves grown in Pakistan. J Food Compos Anal 19:544–551

    CAS  Google Scholar 

  • Jayachitra A, Krithiga N (2012) Study on antioxidant property in selected medicinal plant extract. Int J Med Arom Plants 2(3):495–500

    Google Scholar 

  • Jeyaseelan EC, Jenothiny S, Pathmanathan MK, Jeyadevan JP (2012) Antibacterial activity of sequentially extracted organic solvent extracts of fruits, flowers and leaves of Lawsonia inermis L. from Jaffna. Asian Pac J Trop Biomed 2(10):798–802

    PubMed  PubMed Central  Google Scholar 

  • Kalappurayil TM, Joseph BP (2017) A review of pharmacognostical studies on Moringa oleifera lam. flowers. Pharmacogn J 9(1):1–7

    CAS  Google Scholar 

  • Kaletsky R, Murphy CT (2010) The role of insulin/IGF-like signaling in C. elegans longevity and aging. Dis Models Mech 3(7–8):415–419

    CAS  Google Scholar 

  • Kalyanaraman B, Darley-Usmar V, Davies KJ (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52(1):1–6

    CAS  PubMed  Google Scholar 

  • Kamath RS, Fraser AG, Dong Y (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421(6920):231

    CAS  PubMed  Google Scholar 

  • Karthika S, Ravishankar M, Mariajancyrani J, Chandramohan G (2013) Study on phytoconstituents from Moringa oleifera leaves. Asian J Plant Sci Res 3(4):63–69

    CAS  Google Scholar 

  • Kenyon CJ (2010) The genetics of ageing. Nature 464(7288):504–512

    CAS  PubMed  Google Scholar 

  • Kenyon C, Chang J, Gensch E et al (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366(6454):461

    CAS  PubMed  Google Scholar 

  • Rahman K (2007) Studies on free radicals, antioxidants, and co-factors. Clinical Interventions Aging 2(2):219–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirisattayakul W, Wattanathorn J, Tong-Un T et al (2013) Cerebroprotective effect of Moringa oleifera against focal ischemic stroke induced by middle cerebral artery occlusion. Oxidative Medicine and Cellular Longevity 2013, Article ID 951415. https://doi.org/10.1155/2013/951415

  • Kong Y, Trabucco SE, Zhang H (2014) Oxidative stress, mitochondrial dysfunction and the mitochondria theory of aging. Aging 39:86–107

    Google Scholar 

  • Kumar J, Choudhary BC, Metpally R et al (2010) The Caenorhabditis elegans Kinesin-3 motor UNC-104/KIF1A is degraded upon loss of specific binding to cargo. PLoS Genet 6(11):e1001200

    PubMed  PubMed Central  Google Scholar 

  • Kumar V, Pandey N, Mohan V, Singh RP (2012) Antibacterial and antioxidant activity of the extract of Moringa oleifera leaves—an in vitro study. Int J Pharm Sci Rev Res 12:89–94

    Google Scholar 

  • Kumar G, Gupta R, Sharan S et al (2019) Anticancer activity of plant leaves extract collected from a tribal region of India. 3 Biotech 9(11):399

    PubMed  PubMed Central  Google Scholar 

  • Lamitina ST, Strange K (2005) Transcriptional targets of DAF-16 insulin signaling pathway protect C. elegans from extreme hypertonic stress. Am J Physiol Cell Physiol 288(2):C467–C474

    CAS  PubMed  Google Scholar 

  • Lee SS, Lee RY, Fraser AG et al (2003) A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33(1):40–48

    CAS  PubMed  Google Scholar 

  • Liguori I, Russo G, Curcio F et al (2018) Oxidative stress, aging, and diseases. Clin Interv Aging 13:757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Link CD, Taft A, Kapulkin V et al (2003) Gene expression analysis in a transgenic Caenorhabditis elegans Alzheimer’s disease model. Neurobiol Aging 24(3):397–413

    CAS  PubMed  Google Scholar 

  • Liochev SI (2013) Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med 60:1–4

    CAS  PubMed  Google Scholar 

  • Martinez-Gonzalez CL, Martinez L, Martinez-Ortiz EJ et al (2017) Moringa oleifera, a species with potential analgesic and anti-inflammatory activities. Biomed Pharmacother 87:482–488

    PubMed  Google Scholar 

  • Mathur M, Yadav S, Katariya PK, Kamal R (2014) In vitro propagation and biosynthesis of steroidal sapogenins from various morphogenetic stages of Moringa oleifera Lam., and their antioxidant potential. Acta Physiol Plant 36(7):1749–1762

    CAS  Google Scholar 

  • Medic-Saric M, Jasprica I, Smolcic-Bubalo A, Mornar A (2004) Optimization of chromatographic conditions in thin layer chromatography of flavonoids and phenolic acids. Croat Chem Acta 77(1–2):361–366

    CAS  Google Scholar 

  • Mehta K, Balaraman R, Amin AH et al (2003) Effect of fruits of Moringa oleifera on the lipid profile of normal and hypercholesterolemic rabbits. Ethnopharmacol 86:191–195

    Google Scholar 

  • Mishra G, Singh P, Verma R et al (2011) Traditional uses, phytochemistry and pharmacological properties of Moringa oleifera plant: an overview. Der Pharm Lett 3(2):141–164

    CAS  Google Scholar 

  • Miyoshi N, Takabayashi S, Osawa T, Nakamura Y (2004) Benzyl isothiocyanate inhibits excessive superoxide generation in inflammatory leukocytes: implication for prevention against inflammation-related carcinogenesis. Carcinogenesis 25(4):567–575

    CAS  PubMed  Google Scholar 

  • Mohan M, Kaul N, Punekar A et al (2005) Nootropic activity of Moringa oleifera leaves. J Nat Remedies 5(1):59–62

    Google Scholar 

  • Mukhopadhyay A, Oh SW, Tissenbaum HA (2006) Worming pathways to and from DAF-16/FOXO. Exp Gerontol 41(10):928–934

    CAS  PubMed  Google Scholar 

  • Murakami A, Kitazono Y, Jiwajinda S et al (1998) Niaziminin, a thiocarbamate from the leaves of Moringa oleifera, holds a strict structural requirement for inhibition of tumor-promoter-induced Epstein-Barr virus activation. Planta Med 64:319–323

    CAS  PubMed  Google Scholar 

  • Murphy CT, McCarroll SA, Bargmann CI et al (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424(6946):277–283

    CAS  PubMed  Google Scholar 

  • Njan AA, Amali MO, Olatunji LO, Olorundare OE (2014) An overview of the ethno-pharmacological potential of Moringa oleifera Lam, “The Miracle Tree”. Arch Basic Appl Med 2:135–145

    Google Scholar 

  • Oliveira JTA, Silveira SB, Vasconcelos IM et al (1998) Compositional and nutritional attributes of seeds from the multipurpose tree Moringa oleifera Lamarck. J Sci Food Agric 79:815–820

    Google Scholar 

  • Paliwal R, Sharma V, Pracheta J (2011) A review on horseradish tree (Moringa oleifera): a multipurpose tree with high economic and commercial importance. Asian J Biotechnol 3(4):17–328

    Google Scholar 

  • Pandian GS (2018) Ultraviolet spectrum of extract of Centella asiatica (Vallarai) in edible oil as supplement. Asian J Pharm Clin Res 11(4):425–426. https://doi.org/10.22159/ajpcr.2018.v11i4.23519

    Article  CAS  Google Scholar 

  • Park SY, Jung E, Kim JS et al (2020) Cancer-specific hNQO1-responsive biocompatible naphthalimides providing a rapid fluorescent turn-on with an enhanced enzyme affinity. Sensors 20(1):53

    CAS  Google Scholar 

  • Ramachandran C, Peter KV, Gopalakrishnan PK (1980) Drumstick (Moringa oleifera): a multipurpose Indian vegetable. Econ Bot 34(3):276–283

    CAS  Google Scholar 

  • Rasmussen J, Mahler J, Beschorner N et al (2017) Amyloid polymorphisms constitute distinct clouds of conformational variants in different etiological subtypes of Alzheimer’s disease. Proc Natl Acad Sci 114(49):13018–13023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Senchuk MM, Dues DJ, Schaar CE et al (2018) Activation of DAF-16/FOXO by reactive oxygen species contributes to longevity in long-lived mitochondrial mutants in Caenorhabditis elegans. PLoS Genet 14(3):e1007268

    PubMed  PubMed Central  Google Scholar 

  • Sharma V, Paliwal R (2013a) Isolation and characterization of saponins from Moringa oleifera (moringaeceae) pods. Int J Pharm Pharm Sci 5(1):179–183

    CAS  Google Scholar 

  • Sharma V, Paliwal R (2013b) Preliminary phytochemical investigation and thin layer chromatography profiling of sequential extracts of Moringa oleifera pods. Int J Green Pharm 7(1):41–45

    Google Scholar 

  • Shukla V, Yadav D, Phulara SC et al (2012) Longevity-promoting effects of 4-hydroxy-E-globularinin in Caenorhabditis elegans. Free Radic Biol Med 53(10):1848–1856

    CAS  PubMed  Google Scholar 

  • Shunmugapriya K, Vennila P, Thirukkumar S, Ilamaran M (2017) Identification of bioactive components in Moringa oleifera fruit by GC-MS. J Pharmacogn Phytochem 6(3):748–751

    CAS  Google Scholar 

  • Siddhuraju P, Becker K (2003) Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera L.). J Agric Food Chem 15:2144–2155

    Google Scholar 

  • Singh NK, Sonani RR, Awasthi A et al (2016) Phycocyanin moderates aging and proteotoxicity in Caenorhabditis elegans. J Appl Phycol 28(4):2407–2417

    CAS  Google Scholar 

  • Sonani RR, Singh NK, Awasthi A et al (2014) Phycoerythrin extends life span and health span of Caenorhabditis elegans. Age 36(5):9717

    PubMed  PubMed Central  Google Scholar 

  • Spiridon I, Bodirlau R, Teaca CA (2011) Total phenolic content and antioxidant activity of plants used in traditional Romanian herbal medicine. Cent Eur J Biol 6(3):388–396

    CAS  Google Scholar 

  • Surco-Laos F, Duenas M, Gonzalez-Manzano S et al (2012) Influence of catechins and their methylated metabolites on lifespan and resistance to oxidative and thermal stress of Caenorhabditis elegans and epicatechin uptake. Food Res Int 46(2):514–521

    CAS  Google Scholar 

  • Sutar NG, Bonde CG, Patil VV et al (2008) Analgesic activity of seeds of Moringa oleifera L. Int J Green Pharm 2:108–110

    Google Scholar 

  • Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395(6705):854

    CAS  PubMed  Google Scholar 

  • Vongsak B, Sithisarn P, Gritsanapan W (2014) Simultaneous HPLC quantitative analysis of active compounds in leaves of Moringa oleifera Lam. J Chromatogr Sci 52(7):641–645

    CAS  PubMed  Google Scholar 

  • Wang X, Zhang J, Lu L, Zhou L (2015) The longevity effect of echinacoside in Caenorhabditis elegans mediated through daf-16. Biosci Biotechnol Biochem 79(10):1676–1683

    CAS  PubMed  Google Scholar 

  • Zecic A, Braeckman BP (2020) DAF-16/FoxO in Caenorhabditis elegans and its role in metabolic remodeling. Cells 9(1):109

    CAS  PubMed Central  Google Scholar 

  • Zhang X, Fu Z, Meng L et al (2018) The early events that initiate β-amyloid aggregation in Alzheimer’s disease. Front Aging Neurosci 10:359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Khare P, Feldman L, Dent JA (2003) Reversal frequency in Caenorhabditis elegans represents an integrated response to the state of the animal and its environment. J Neurosci 23(12):5319–5328

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research was not supported by any funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: APC, MGC, SNP, DM, NKS; Methodology: APC, MGC, SNP, DM, NKS; Formal analysis and investigation: APC, MGC, SNP, DM, NKS; Writing-original draft preparation: APC; Writing-review and editing: NKS; Resources: Shri. A. N. Patel P. G. Institute of Science and Research, Anand; Post Graduate Department of Bioscience, Sardar Patel University, Anand; Supervision: NKS.

Corresponding author

Correspondence to Niraj Kumar Singh.

Ethics declarations

Conflict of interest

Anita Prabhatsinh Chauhan, Mukesh Ghanshyam Chaubey, Stuti Nareshkumar Patel, Datta Madamwar, and Niraj Kumar Singh declare that they have no conflict of interest.

Ethics approval

No human or animal rights are applicable to this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, A.P., Chaubey, M.G., Patel, S.N. et al. Extension of life span and stress tolerance modulated by DAF-16 in Caenorhabditis elegans under the treatment of Moringa oleifera extract. 3 Biotech 10, 504 (2020). https://doi.org/10.1007/s13205-020-02485-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02485-x

Keywords

Navigation