Skip to main content
Log in

Cytotoxicity and insulin resistance reversal ability of biofunctional phytosynthesized MgO nanoparticles

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The present study investigates the cytotoxicity of hexagonal MgO nanoparticles synthesized via Amaranthus tricolor leaf extract and spherical MgO nanoparticles synthesized via Amaranthus blitum and Andrographis paniculata leaf extracts. In vitro cytotoxicity analysis showed that the hexagonal MgO nanoparticles synthesized from A. tricolor extract demonstrated the least toxicity to both diabetic and non-diabetic cells at 600 μl/ml dosage. The viability of the diabetic cells (3T3-L1) after incubation with varying dosages of MgO nanoparticles was observed to be 55.3%. The viability of normal VERO cells was 86.6% and this stabilized to about 75% even after exposure to MgO nanoparticles dosage of up to 1000 μl/ml. Colorimetric glucose assay revealed that the A. tricolor extract synthesized MgO nanoparticles resulted in ~ 28% insulin resistance reversal. A reduction in the expression of GLUT4 protein at 54 KDa after MgO nanopaSrticles incubation with diabetic cells was observed via western blot analysis to confirm insulin reversal ability. Fluorescence microscopic analysis with propidium iodide and acridine orange dyes showed the release of reactive oxygen species as a possible mechanism of the cytotoxic effect of MgO nanoparticles. It was inferred that the synergistic effect of the phytochemicals and MgO nanoparticles played a significant role in delivering enhanced insulin resistance reversal capability in adipose cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

© The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AMPK:

5′ Adenosine monophosphate-activated protein kinase

ATP:

Adenosine triphosphate

DMEM:

Dulbecco’s Modified Eagle’s Medium

DMSO:

Dimethyl sulfoxide

DNA:

Deoxyribonucleic acid

DNS:

Dinitro salicylic acid

EDTA:

Ethylene diamine tetra acetic acid

FBS:

Fetal bovine serum

GLUT4:

Glucose transporter4

MgO:

Magnesium oxide

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NCCS:

National Cell Culture Society

PARS:

Poly (ADP-Ribose) synthetase

PBS:

Phosphate buffered saline

PI3K:

Phosphatidylinositol-3-kinase

PVDF:

Polyvinylidene difluoride

ROS:

Reactive oxygen species

USA:

United States of America

w/v:

Weight per volume

References

  • Adochio R, Leitner JW, Hedlund R, Draznin B (2009) Rescuing 3T3-L1 adipocytes from insulin resistance induced by stimulation of akt-mammalian target of rapamycin/p70 S6 Kinase (S6K1) pathway and serine phosphorylation of insulin receptor substrate-1: effect of reduced expression of p85α subunit of phosphatidylinositol 3-kinase and S6K1 kinase. Endocrinology 150:1165–1173. https://doi.org/10.1210/en.2008-0437

    Article  CAS  PubMed  Google Scholar 

  • Al-Brashdi AS, Al-Ariymi H, Al Hashmi M, Khan SA (2016) Evaluation of antioxidant potential, total phenolic content and phytochemical screening of aerial parts of a folkloric medicine, Haplophyllum tuberculatum (Forssk) A. Juss J Coastal Life Med 4:315–319

    CAS  Google Scholar 

  • Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharmaceutics 5:505–515

    CAS  Google Scholar 

  • Amerasan D, Nataraj T, Murugan K, Panneerselvam C, Madhiyazhagan P, Nicoletti M, Benelli G (2016) Myco-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci 89:249–256

    Google Scholar 

  • Andra S, Balu SK, Jeevanandham J, Muthalagu M, Vidyavathy M, San Chan Y, Danquah MK (2019) Phytosynthesized metal oxide nanoparticles for pharmaceutical applications. Naunyn-Schmiedeberg’s Arch Pharmacol 392:755–771

    CAS  Google Scholar 

  • Aranaz P et al (2019b) Phenolic compounds inhibit 3T3-L1 adipogenesis depending on the stage of differentiation and their binding affinity to PPARγ. Molecules 24:1045

    CAS  PubMed Central  Google Scholar 

  • Asemi Z et al (2015) Magnesium supplementation affects metabolic status and pregnancy outcomes in gestational diabetes: a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr 102:222–229

    CAS  PubMed  Google Scholar 

  • Bai W-X, Wang C, Wang Y-J, Zheng W-J, Wang W, Wan X-C, Bao G-H (2017) Novel acylated flavonol tetraglycoside with inhibitory effect on lipid accumulation in 3T3-L1 cells from Lu’an GuaPian tea and quantification of flavonoid glycosides in six major processing types of tea. J Agricult Food Chem 65:2999–3005

    CAS  Google Scholar 

  • Bertinato J, Xiao CW, Ratnayake WN, Fernandez L, Lavergne C, Wood C, Swist E (2015) Lower serum magnesium concentration is associated with diabetes, insulin resistance, and obesity in South Asian and white Canadian women but not men. Food Nutr Res 59:25974

    PubMed  Google Scholar 

  • Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boo H-O, Park J-H, Lee M-S, Kwon S-J, Kim H-H (2018) In Vitro Cytotoxicity against Human Cancer Cell and 3T3-L1 Cell Total Polyphenol Content and DPPH radical scavenging of codonopsis lanceolata according to the concentration of ethanol solvent. 한국자원식물학회지 31:195–201

    Google Scholar 

  • Borenfreund E, Puerner JA (1985) Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett 24:119–124

    CAS  PubMed  Google Scholar 

  • Buse JB et al (2009) How do we define cure of diabetes? Diabetes Care 32:2133

    PubMed  PubMed Central  Google Scholar 

  • Cardona T, Shao S, Nixon PJ (2018) Enhancing photosynthesis in plants: the light reactions. Essays Biochem 62:85–94

    PubMed  PubMed Central  Google Scholar 

  • Carluccio MA et al (2003) Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: antiatherogenic properties of Mediterranean diet phytochemicals Arterioscler. Thromb, Vasc Biol 23:622–629

    CAS  Google Scholar 

  • Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47:936–942

    CAS  PubMed  Google Scholar 

  • Chan SM, Khoo KS, Sit NW (2015) Interactions between plant extracts and cell viability indicators during cytotoxicity testing: implications for ethnopharmacological studies Trop J. Pharm Res 14:1991–1998

    CAS  Google Scholar 

  • Chyau C-C, Chu C-C, Chen S-Y, Duh P-D (2018) The inhibitory effects of djulis (chenopodium formosanum) and its bioactive compounds on adipogenesis in 3T3-L1 adipocytes. Molecules 23:1780

    PubMed Central  Google Scholar 

  • Cushman S, Wardzala L (1980) Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem 255:4758–4762

    CAS  PubMed  Google Scholar 

  • Di D-R, He Z-Z, Sun Z-Q, Liu J (2012) A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles Nanomedicine. NBM 8:1233–1241

    CAS  Google Scholar 

  • Dowsett D, Wirtz T (2017) Co-registered in situ secondary electron and mass spectral imaging on the helium ion microscope demonstrated using lithium titanate and magnesium oxide nanoparticles. Anal Chem 89:8957–8965

    CAS  PubMed  Google Scholar 

  • Du X, Matsumura T, Edelstein D, Rossetti L, Zsengellér Z, Szabó C, Brownlee M (2003) Inhibition of GAPDH activity by poly (ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 112:1049–1057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dzoyem JP, Eloff JN (2015) Anti-inflammatory, anticholinesterase and antioxidant activity of leaf extracts of twelve plants used traditionally to alleviate pain and inflammation in South Africa. J Ethnopharmacol 160:194–201

    CAS  PubMed  Google Scholar 

  • Edidin M (2003) Lipids on the frontier: a century of cell-membrane bilayers. Nat Rev Mol Cell Biol 4:414

    CAS  PubMed  Google Scholar 

  • Elmendorf JS, Chen D, Pessin JE (1998) Guanosine 5′-O-(3-Thiotriphosphate) (GTPγS) Stimulation of GLUT4 Translocation is Tyrosine Kinase-dependent. J Biol Chem 273:13289–13296. https://doi.org/10.1074/jbc.273.21.13289

    Article  CAS  PubMed  Google Scholar 

  • Eruygur N, Koçyiğit UM, Taslimi P, Ataş MEHMET, Tekin M, Gülçin İ (2019) Screening the in vitro antioxidant, antimicrobial, anticholinesterase, antidiabetic activities of endemic Achillea cucullata (Asteraceae) ethanol extract. S Afr J Bot 120:141–145

    CAS  Google Scholar 

  • Favaretto F et al (2014) GLUT4 defects in adipose tissue are early signs of metabolic alterations in Alms1GT/GT, a mouse model for obesity and insulin resistance. PLoS ONE 9:e109540

    PubMed  PubMed Central  Google Scholar 

  • Freiesleben S, Jäger A (2014) Correlation between plant secondary metabolites and their antifungal mechanisms–a review. Med Aromat Plants 3:1–6

    Google Scholar 

  • Friedman M, Levin CE, Henika PR (2017) Addition of phytochemical-rich plant extracts mitigate the antimicrobial activity of essential oil/wine mixtures against Escherichia coli O157: H7 but not against Salmonella enterica. Food Control 73:562–565

  • Ha BG, Moon D-S, Kim HJ, Shon YH (2016) Magnesium and calcium-enriched deep-sea water promotes mitochondrial biogenesis by AMPK-activated signals pathway in 3T3-L1 preadipocytes. Biomed Pharmacother 83:477–484

    CAS  PubMed  Google Scholar 

  • Hanan NA, Chiu HI, Ramachandran MR, Tung WH, Mohamad Zain NN, Yahaya N, Lim V (2018) Cytotoxicity of plant-mediated synthesis of metallic nanoparticles: a systematic review. Int J Mol Sci 19(6):1725

    PubMed Central  Google Scholar 

  • Houstis NE, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440:944–948

    CAS  PubMed  Google Scholar 

  • Jeevanandam J, Danquah MK, Debnath S, Meka VS, Chan YS (2015) Opportunities for nano-formulations in type 2 diabetes mellitus treatments. Curr Pharm Biotechnol 16:853–870

    CAS  PubMed  Google Scholar 

  • Jeevanandam J, Chan YS, Danquah MK (2016) Biosynthesis of metal and metal oxide nanoparticles. ChemBioEng Rev 3:55–67. https://doi.org/10.1002/cben.201500018

    Article  CAS  Google Scholar 

  • Jeevanandam J, Chan YS, Danquah MK (2017a) Biosynthesis and characterization of MgO nanoparticles from plant extracts via induced molecular nucleation. New J Chem 41:2800–2814. https://doi.org/10.1039/C6NJ03176E

    Article  CAS  Google Scholar 

  • Jeevanandam J, Chan YS, Danquah MK (2017b) Calcination-dependent morphology transformation of Sol-Gel-Synthesized MgO Nanoparticles. Chem Select 2:10393–10404

    CAS  Google Scholar 

  • Jeevanandam J, San Chan Y, Danquah MK (2017) Biosynthesis and characterization of MgO nanoparticles from plant extracts via induced molecular nucleation. New J Chem 41:2800–2814

    CAS  Google Scholar 

  • Jeevanandam J, Chan YS, Danquah MK (2019a) Effect of pH variations on morphological transformation of biosynthesized MgO nanoparticles. Part Sci Technol 38:573–586

    Google Scholar 

  • Jeevanandam J, San Chan Y, Danquah MK, Law MC (2019b) Cytotoxicity analysis of morphologically different Sol-Gel-synthesized MgO nanoparticles and their in vitro insulin resistance reversal ability in adipose cells. Appl Biochem Biotechnol 1–26

  • Kabera JN, Semana E, Mussa AR, He X (2014) Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J Pharm Pharmacol 2:377–392

    Google Scholar 

  • Kameshita I, Matsuda Z, Taniguchi T, Shizuta Y (1984) Poly (ADP-Ribose) synthetase Separation and identification of three proteolytic fragments as the substrate-binding domain, the DNA-binding domain, and the automodification domain. J Biol Chem 259:4770–4776

    CAS  PubMed  Google Scholar 

  • Karaman DŞ, Manner S, Fallarero A, Rosenholm JM (2017) Current approaches for exploration of nanoparticles as antibacterial agents. In: Kumavath R (ed) Antibacterial agents 2017. IntechOpen Rijeka Croatia, pp 61–86

  • Kim I-Y, Joachim E, Choi H, Kim K (2015) Toxicity of silica nanoparticles depends on size, dose, and cell type nanomedicine. NBM 11:1407–1416. https://doi.org/10.1016/j.nano.2015.03.004

    Article  CAS  Google Scholar 

  • Krishnamoorthy K, Moon JY, Hyun HB, Cho SK, Kim S-J (2012) Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. J Mater Chem 22:24610–24617

    CAS  Google Scholar 

  • Kurstjens S et al (2017) Hypomagnesemia in type 2 diabetes is correlated with insulin resistance and changes in lipid metabolism in patients and mice. FASEB J 31(715):711–715

    Google Scholar 

  • Lee PY, Yang CH, Kao MC, Su NY, Tsai PS, Huang CJ (2015) Phosphoinositide 3-kinase beta, phosphoinositide 3-kinase delta, and phosphoinositide 3-kinase gamma mediate the anti-inflammatory effects of magnesium sulfate. J Surg Res 197:390–397. https://doi.org/10.1016/j.jss.2015.04.051

    Article  CAS  PubMed  Google Scholar 

  • Leung YH et al (2014) Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small 10:1171–1183

    CAS  PubMed  Google Scholar 

  • Liaudet L, Soriano FG, Szabó C Poly (ADP-Ribose) Synthetase as a Novel Therapeutic Target for Circulatory Shock. In: Vincent J-L (ed) Yearbook of Intensive Care and Emergency Medicine 2001, Berlin, Heidelberg, 2001//2001. Springer Berlin Heidelberg, 78–89

  • Lihn AS, Pedersen SB, Richelsen B (2005) Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev 6:13–21

    CAS  PubMed  Google Scholar 

  • Liu W, Webster T (2016) Toxicity and biocompatibility properties of nanocomposites for musculoskeletal tissue regeneration. In: nanocomposites for musculoskeletal tissue regeneration. Elsevier, 95–122

  • Luo X et al. (2017) PARP-1 controls the adipogenic transcriptional program by PARylating C/EBPβ and modulating its transcriptional activity Mol Cell 65:260–271

  • Malik SK, Ahmed M, Khan F (2018) Identification of novel anticancer terpenoids from prosopis juliflora (Sw) DC (Leguminosae) pods. Trop J Pharm Res 17:661–668

    CAS  Google Scholar 

  • Martin OJ, Lee A, McGraw TE (2006) GLUT4 distribution between the plasma membrane and the intracellular compartments is maintained by an insulin-modulated bipartite dynamic mechanism. J Biol Chem 281:484–490

    CAS  PubMed  Google Scholar 

  • McGillicuddy FC, Harford KA, Reynolds CM, Oliver E, Claessens M, Mills KH, Roche HM (2011) Lack of interleukin-1 receptor I (IL-1RI) protects mice from high-fat diet–induced adipose tissue inflammation coincident with improved glucose homeostasis. Diabetes 60(6):1688–1698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meselhy KM, Shams MM, Sherif NH, El-sonbaty SM (2018) Phytochemical study, potential cytotoxic and antioxidant activities of selected food byproducts (Pomegranate peel, Rice bran, Rice straw and Mulberry bark). Nat Prod Res 10(1080/14786419):1488708

    Google Scholar 

  • Mirhosseini M, Afzali M (2016) Investigation into the antibacterial behavior of suspensions of magnesium oxide nanoparticles in combination with nisin and heat against Escherichia coli and Staphylococcus aureus in milk. Food Control 68:208–215

    CAS  Google Scholar 

  • Mohamed SA, Al-Malki AL, Kumosani TA (2009) Partial purification and characterization of five α-amylases from a wheat local variety (Balady) during germination. Aust J Basic Appl Sci 3:1740–1748

    CAS  Google Scholar 

  • Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 121:49–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    CAS  PubMed  Google Scholar 

  • Naveen J, Baskaran V (2018) Antidiabetic plant-derived nutraceuticals: a critical review. Eur J Nutr 57:1275–1299

    CAS  PubMed  Google Scholar 

  • Oh YS (2015) Plant-derived compounds targeting pancreatic beta cells for the treatment of diabetes. J Evidence-Based Complementary Altern Med 2015:12. https://doi.org/10.1155/2015/629863

    Article  Google Scholar 

  • Pakrashi S et al (2014) Vivo genotoxicity assessment of titanium dioxide nanoparticles by Allium cepa root tip assay at high exposure concentrations. PLoS ONE 9:e87789

    PubMed  PubMed Central  Google Scholar 

  • Pereira L, Mehboob F, Stams AJ, Mota MM, Rijnaarts HH, Alves MM (2015) Metallic nanoparticles: microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation. Crit Rev Biotechnol 35:114–128

    CAS  PubMed  Google Scholar 

  • Petrak F, Baumeister H, Skinner TC, Brown A, Holt RIG (2015) Depression and diabetes: treatment and health-care delivery. Lancet Diabetes Endocrinol 3:472–485. https://doi.org/10.1016/S2213-8587(15)00045-5

    Article  PubMed  Google Scholar 

  • Polat R, Cakilcioglu U, Ulusan MD, Paksoy MY (2015) Survey of wild food plants for human consumption in Elazığ (Turkey). Indian J Tradit Knowl 1:69–75. http://nopr.niscair.res.in/handle/123456789/32029

    Google Scholar 

  • Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G (2011) Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation Nanomedicine. NBM 7:184–192

    CAS  Google Scholar 

  • Rahmatullah M et al (2013) Antihyperglycemic and antinociceptive activity evaluation of methanolic extract of whole plant of Amaranthus Tricolor L. (Amaranthaceae). Afr J Tradit Complementary Altern Med 10:408–411

    Google Scholar 

  • Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1:1458

    CAS  PubMed  Google Scholar 

  • Saini RK, Moon SH, Gansukh E, Keum Y-S (2018) An efficient one-step scheme for the purification of major xanthophyll carotenoids from lettuce, and assessment of their comparative anticancer potential. Food Chem 266:56–65

    CAS  PubMed  Google Scholar 

  • Sangeetha RK, Baskaran V (2010) Carotenoid composition and retinol equivalent in plants of nutritional and medicinal importance: Efficacy of β-carotene from Chenopodium album in retinol-deficient rats. Food Chem 119:1584–1590

    CAS  Google Scholar 

  • Schröfel A, Kratošová G, Šafařík I, Šafaříková M, Raška I, Shor LM (2014) Applications of biosynthesized metallic nanoparticles–A review. Acta Biomater 10:4023–4042

    PubMed  Google Scholar 

  • Shehzad A, Qureshi M, Jabeen S, Ahmad R, Alabdalall AH, Aljafary MA, Al-Suhaimi E (2018) Synthesis, characterization and antibacterial activity of silver nanoparticles using Rhazya stricta. PeerJ 6:e6086

    PubMed  PubMed Central  Google Scholar 

  • Shen Q, Li L, Jiang Y, Wang Q (2016) Functional characterization of ent-copalyl diphosphate synthase from Andrographis paniculata with putative involvement in andrographolides biosynthesis. Biotechnol Lett 38:131–137

    CAS  PubMed  Google Scholar 

  • Sheng-Ji P (2001) Ethnobotanical approaches of traditional medicine studies: some experiences from Asia. Pharm Biol 39:74–79. https://doi.org/10.1076/phbi.39.s1.74.0005

    Article  PubMed  Google Scholar 

  • Simental-Mendía LE, Sahebkar A, Rodríguez-Morán M, Guerrero-Romero F (2016) A systematic review and meta-analysis of randomized controlled trials on the effects of magnesium supplementation on insulin sensitivity and glucose control. Pharmacol Res 111:272–282. https://doi.org/10.1016/j.phrs.2016.06.019

    Article  CAS  PubMed  Google Scholar 

  • Simon H-U, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    CAS  PubMed  Google Scholar 

  • Singh R (2015) Medicinal plants: a review. J Plant Sci 3:50–55

    Google Scholar 

  • Singh S (2017) Glucose decorated gold nanoclusters: a membrane potential independent fluorescence probe for rapid identification of cancer cells expressing Glut receptors. Colloids Surf B 155:25–34. https://doi.org/10.1016/j.colsurfb.2017.03.052

    Article  CAS  Google Scholar 

  • Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA (2015) Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol 99:4579–4593

    CAS  PubMed  Google Scholar 

  • Singh P, Kim Y-J, Zhang D, Yang D-C (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34:588–599

    CAS  PubMed  Google Scholar 

  • Sivagnaname N, Kalyanasundaram M (2004) Laboratory evaluation of methanolic extract of Atlantia monophylla (Family: Rutaceae) against immature stages of mosquitoes and non-target organisms. Mem Inst Oswaldo Cruz 99:115–118

    CAS  PubMed  Google Scholar 

  • Smith ME, Morton DG (2010) 9 - THE ABSORPTIVE AND POST-ABSORPTIVE STATES. In: Smith ME, Morton DG (eds) The Digestive System (Second Edition). Churchill Livingstone 153–169. https://doi.org/10.1016/B978-0-7020-3367-4.00009-8

  • Solowey E, Lichtenstein M, Sallon S, Paavilainen H, Solowey E, Lorberboum-Galski H (2014) Evaluating medicinal plants for anticancer activity. Sci World J 2014:721402. https://doi.org/10.1155/2014/721402

    Article  Google Scholar 

  • Stöckli J, Fazakerley DJ, James DE (2011) GLUT4 exocytosis. J Cell Sci 124:4147–4159

    PubMed  PubMed Central  Google Scholar 

  • Swarnakar NK, Thanki K, Jain S (2014) Bicontinuous cubic liquid crystalline nanoparticles for oral delivery of Doxorubicin: implications on bioavailability, therapeutic efficacy, and cardiotoxicity. Pharm Res 31:1219–1238

    CAS  PubMed  Google Scholar 

  • Sylow L et al (2013) Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle. Diabetes 62:1865–1875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sylow L et al (2014) Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance. Cell Signalling 26:323–331

    CAS  PubMed  Google Scholar 

  • Szabó C, Dawson VL (1998) Role of poly (ADP-ribose) synthetase in inflammation and ischaemia–reperfusion. Trends Pharmacol Sci 19:287–298

    PubMed  Google Scholar 

  • Tan JBL, Lim YY (2015) Critical analysis of current methods for assessing the in vitro antioxidant and antibacterial activity of plant extracts. Food Chem 172:814–822

    CAS  PubMed  Google Scholar 

  • Whitfield P, Parry-Strong A, Walsh E, Weatherall M, Krebs JD (2016) The effect of a cinnamon-, chromium- and magnesium-formulated honey on glycaemic control, weight loss and lipid parameters in type 2 diabetes: an open-label cross-over randomised controlled trial. Eur J Nutr 55:1123–1131. https://doi.org/10.1007/s00394-015-0926-x

    Article  CAS  PubMed  Google Scholar 

  • Widjajakusuma EC et al (2018) Phytochemical screening and preliminary clinical trials of the aqueous extract mixture of Andrographis paniculata (Burm. F.) Wall. ex Nees and Syzygium polyanthum (Wight.) Walp leaves in metformin treated patients with type 2 diabetes. Phytomedicine. https://doi.org/10.1016/j.phymed.2018.07.002

    Article  PubMed  Google Scholar 

  • Wood M (2017) The book of herbal wisdom: using plants as medicines. North Atlantic Books Berkeley California United States, pp 1-535. ISBN-13: 978-1-55643-232-3

  • Xiao K et al (2011) The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32:3435–3446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto Y, Nagasaki Y, Kato Y, Sugiyama Y, Kataoka K (2001) Long-circulating poly (ethylene glycol)–poly (d, l-lactide) block copolymer micelles with modulated surface charge. J Controlled Release 77:27–38

    CAS  Google Scholar 

  • Yamauchi T et al. (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:941 https://doi.org/10.1038/90984https://www.nature.com/articles/nm0801_941#supplementary-information

  • Yameen B, Choi WI, Vilos C, Swami A, Shi J, Farokhzad OC (2014) Insight into nanoparticle cellular uptake and intracellular targeting. J Controlled Release 190:485–499

    CAS  Google Scholar 

  • Yang Z, Wang J, Altura BT, Altura BM (2000) Extracellular magnesium deficiency induces contraction of arterial muscle: role of PI3-kinases and MAPK signaling pathways. Pflugers Arch 439:240–247

    CAS  PubMed  Google Scholar 

  • Zaccardi F, Webb DR, Yates T, Davies MJ (2016) Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgrad Med J 92:63–69

    CAS  PubMed  Google Scholar 

  • Zahid K, Ahmed M, Khan F (2018) Phytochemical screening, antioxidant activity, total phenolic and total flavonoid contents of seven local varieties of Rosa indica L. Nat Prod Res 32:1239–1243

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen San Chan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1787 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeevanandam, J., Chan, Y.S. & Danquah, M.K. Cytotoxicity and insulin resistance reversal ability of biofunctional phytosynthesized MgO nanoparticles. 3 Biotech 10, 489 (2020). https://doi.org/10.1007/s13205-020-02480-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02480-2

Keywords

Navigation