Skip to main content
Log in

Developmental stage-associated microbiota profile of the peach fruit fly, Bactrocera zonata (Diptera: Tephritidae) and their functional prediction using 16S rRNA gene metabarcoding sequencing

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The different developmental stage-associated microbiota of the peach fruit fly, Bactrocera zonata (Diptera: Tephritidae), was characterized using 16S rRNA gene (V3–V4 region) metabarcoding on the Illumina HiSeq platform. Taxonomically, at 97% similarity, there were total 16 bacterial phyla, comprising of 24 classes, 55 orders, 90 families and 134 genera. Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes were the most abundant phyla with Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, Bacteroidia and Bacilli being the most abundant classes. The bacterial genus Enterobacter was dominant in the larval and adult stages and Pseudomonas in the pupal stage. A total of 2645 operational taxonomic units (OTUs) were identified, out of which 151 OTUs (core microbiota) were common among all the developmental stages of B. zonata. The genus Enterobacter, Klebsiella and Pantoea were dominant among the core microbiota. PICURSt analysis predicted that microbiota associated with B. zonata may be involved in membrane transport, carbohydrate metabolism, amino acid metabolism, replication and repair processes as well as in cellular processes and signalling. The microbiota that was shared by all the developmental stages of B. zonata in the present study could be targeted and the foundation for research on microbiota-based management of fruit flies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelfattah A, Malacrinò A, Wisniewski M, Cacciola SO, Schena L (2017) Metabarcoding: a powerful tool to investigate microbial communities and shape future plant protection strategies. Biol Control 120:1–10. https://doi.org/10.1016/j.biocontrol.2017.07.009

    Article  Google Scholar 

  • Aharon Y, Pasternak Z, Ben Yosef M, Behar A, Lauzon C, Yuval B et al (2013) Phylogenetic, metabolic, and taxonomic diversities shape Mediterranean fruit fly microbiotas during ontogeny. Appl Environ Microb 79(1):303–313. https://doi.org/10.1128/AEM.02761-12

    Article  CAS  Google Scholar 

  • Andongma AA, Wan L, Dong Y-C, Li P, Desneux N, White JA, Niu CY (2015) Pyrosequencing reveals a shift in symbiotic bacteria populations across life stages of Bactrocera dorsalis. Sci Rep 5:9470

    PubMed  PubMed Central  Google Scholar 

  • Arasu MV, Duraipandiyan V, Agastian P, Ignacimuthu S (2008) Antimicrobial activity of Streptomyces spp. ERI-26 recovered from Western Ghats of Tamil Nadu. J Med Mycol 18:147–153

    Google Scholar 

  • Augustinos AA, Tsiamis G, Cáceres C, Abd-Alla AMM, Bourtzis K (2019) Taxonomy, diet, and developmental stage contribute to the structuring of gut-associated bacterial communities in tephritid pest species. Front Microbiol 10:2004. https://doi.org/10.3389/fmicb.2019.02004

    Article  PubMed  PubMed Central  Google Scholar 

  • Azambuja P, Garcia ES, Ratcliffe NA (2005) Gut microbiota and parasite transmission by insect vectors. Trends Parasitol 21:568–572

    PubMed  Google Scholar 

  • Behar A, Yuval B, Jurkevitch E (2005) Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Mol Ecol 14(9):2637–2643

    CAS  PubMed  Google Scholar 

  • Behar A, Yuval B, Jurkevitch E (2008) Gut bacterial communities in the Mediterranean fruit fly (Ceratitis capitata) and their impact on host longevity. J Insect Physiol 54:1377–1383

    CAS  PubMed  Google Scholar 

  • Belcari A, Bobbio E (1999) The use of copper in control of the olive fly - Bactrocera oleae. Inf Fitopatol 49:52–55

    Google Scholar 

  • Ben Ami E, Yuval B, Jurkevitch E (2010) Manipulation of the microbiota of mass-reared mediterranean fruit flies Ceratitis capitata (Diptera: Tephritidae) improves sterile male sexual performance. ISME J 4:28–37

    PubMed  Google Scholar 

  • Ben-Yosef M, Pasternak Z, Jurkevitch E, Yuval B (2014) Symbiotic bacteria enable olive flies (Bactrocera oleae) to exploit intractable sources of nitrogen. J Evol Biol 27:2695–2705

    CAS  PubMed  Google Scholar 

  • Berasategui A, Shukla S, Salem H, Kaltenpoth M (2016) Potential applications of insect symbionts in biotechnology. Appl Microbiol Biotechnol 100:1567–1577. https://doi.org/10.1007/s00253-015-7186-9

    Article  CAS  PubMed  Google Scholar 

  • CABI/EPPO (2013) Bactrocera zonata. [Distribution map]. Distribution Maps of Plant Pests, No.December, 3rd revision, CABI, Wallingford, UK, Map 125.

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010a) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Bittinger K, Bushman FD, De Santis TZ, Andersen GL, Knight R (2010b) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267. https://doi.org/10.1093/bioinformatics/btp636

    Article  CAS  PubMed  Google Scholar 

  • Capuzzo C, Firrao G, Mazzon L, Squartini A, Girolami V (2005) “Candidatus Erwinia dacicola”, a co-evolved symbiotic bacterium of the olive fly, Bactrocera oleae (Gmelin). Int J Syst Evol Microbiol 55:1641–1647

    CAS  PubMed  Google Scholar 

  • Cheng D, Guo Z, Riegler M, Xi Z, Liang G, Xu Y (2017) Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome 5:13. https://doi.org/10.1186/s40168-017-0236

    Article  PubMed  PubMed Central  Google Scholar 

  • Choudhary JS, Kumari A, Das B, Maurya S, Kumar S (2012) Diversity and population dynamic of fruit flies species in methyl eugenol based parapheromone traps in Jharkhand region of India. Ecoscan 1:57–60

    Google Scholar 

  • Choudhary JS, Naaz N, Lemtur M, Das B, Singh AK, Bhagwati BP, Prabhakar CS (2018) Genetic analysis of Bactrocera zonata (Diptera: Tephritidae) populations from India based on cox1 and nad1 gene sequences. Mitochondrial DNA Part A 29(5):727–736

    CAS  Google Scholar 

  • Choudhary JS, Mali SS, Naaz N, Mukherjee D, Maonaro DB, Singh AK, Rao MS, Bhatt BP (2020) Predicting the population growth potential of Bactrocera zonata (Saunders) (Diptera: Tephritidae) using temperature development growth models and their validation in fluctuating temperature condition. Phytoparasitica 48:1–13. https://doi.org/10.1007/s12600-019-00777-4

    Article  Google Scholar 

  • Dettner K (2011) Potential pharmaceuticals from insects and their co-occurring microorganisms. In Insect Biotechnology: A. Vilcinskas (ed), Biologically-Inspired Systems, Springer, Dordrecht, Vol. 2.

  • Deutscher AT, Burke CM, Darling AE, Riegler M, Reynolds OL, Chapman TA (2018) Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae. Microbiome 6:85

    PubMed  PubMed Central  Google Scholar 

  • Dhariwal A, Chong J, Habib S, King I, Agellon LB, Xia J (2017) MicrobiomeAnalyst—a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res 45:180–188. https://doi.org/10.1093/nar/gkx295

    Article  CAS  Google Scholar 

  • Dillon R, Dillon V (2004) The gut bacteria of insects: non-pathogenic interactions. Annu Rev Entomol 49(1):71–79

    CAS  PubMed  Google Scholar 

  • Douglas AE (2015) Multiorganismal Insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34

    CAS  PubMed  Google Scholar 

  • Duyck PF, Sterlin JF, Quilici S (2004) Survival and development of different life stages of Bactrocera zonata (Diptera: Tephritidae) reared at five constant temperatures compared to other fruit fly species. Bull Entomol Res 94:89–93

    CAS  PubMed  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    CAS  PubMed  Google Scholar 

  • Engel P, Moran NA (2013) The gut microbiota of insects-diversity in structure and function. FEMS Microbiol Rev 37:699–735. https://doi.org/10.1111/1574-6976.12025PMID: 23692388

    Article  CAS  PubMed  Google Scholar 

  • Estes AM, Hearn DJ, Burrack HJ, Rempoulakis P, Pierson EA (2012) Prevalence of Candidatus Erwinia dacicola in wild and laboratory olive fruit fly populations and across developmental stages. Environ Entomol 41(2):265–274

    PubMed  Google Scholar 

  • Ezenwa VO, Gerardo NM, Inouye DW, Medina M, Xavier JB (2012) Microbiology: animal behaviour and the microbiome. Science 338:198–199

    CAS  PubMed  Google Scholar 

  • Feldhaar H (2011) Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol Entomol 36(5):533–543. https://doi.org/10.1111/j.1365-311.2011.01318.x

    Article  Google Scholar 

  • Ferrari J, Scarborough CL, Godfray HCJ (2007) Genetic variation in the effect of a facultative symbiont on host-plant use by pea aphids. Oecologia 153(2):323–329. https://doi.org/10.1007/s00442-007-0730-2PMID: 17415589

    Article  PubMed  Google Scholar 

  • Fitt GP, O’Brien RW (1985) Bacteria associated with four species of Dacus (Diptera: Tephritidae) and their role in the nutrition of the larvae. Oecol (Berl) 67:447–454

    Google Scholar 

  • Fredenhagen A, Tamura SY, Kenny PTM, Komura H, Naya Y, Nakanishi K et al (1987) Andrimid, a new peptide antibiotic produced by an intracellular bacterial symbiont isolated from a brown planthopper. J Am Chem Soc 109:4409–4411. https://doi.org/10.1021/ja00248a055

    Article  CAS  Google Scholar 

  • Hammer Ø, Harper D, Ryan P (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9

    Google Scholar 

  • Hammer TJ, Bowers MD (2015) Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179(1):1–14. https://doi.org/10.1007/s00442-015-3327-1PMID: 25936531

    Article  PubMed  Google Scholar 

  • Hill GT, Mitkowski NA, Aldrich-Wolfe L, Emele LR, Jurkonie DD, Ficke A et al (2000) Methods for assessing the composition and diversity of soil microbial communities. Appl Soil Ecol 15(1):25–36. https://doi.org/10.1016/S0929-1393(00)00069-X

    Article  Google Scholar 

  • Hongoh Y, Ekpornprasit L, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M et al (2006) Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Mol Ecol 15(2):505–516. https://doi.org/10.1111/j.1365-294X.2005.02795.xPMID: 16448416

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa T, Kikuchi Y, Shimada M, Fukatsu T (2017) Obligate symbiont involved in pest status of host insect. Proc R Soc Lond [Biol] 274:1979–1984

    Google Scholar 

  • Hu F, Dou W, Wang JJ, Jia FX, Wang JJ (2014) Multiple glutathione S-transferase genes: identification and expression in oriental fruit fly, Bactrocera dorsalis. Pest Manag Sci 70:295–303

    CAS  PubMed  Google Scholar 

  • Indiragandhi P, Anandham R, Madhaiyan M, Poonguzhali S, Kim GH, Saravanan VS et al (2007) Cultivable bacteria associated with larval gut of prothiofos-resistant, prothiofos-susceptible and field-caught populations of diamondback moth, Plutella xylostella and their potential for antagonism towards entomopathogenic fungi and host insect nutrition. J Appl Microbio 103:2664–2675

    CAS  Google Scholar 

  • Kaltenpoth M (2009) Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol 17:529–535. https://doi.org/10.1016/j.tim.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  • Kaltenpoth M, Engl T (2014) Defensive microbial symbionts in Hymenoptera. Funct Ecol 28:315–327. https://doi.org/10.1111/1365-2435.12089

    Article  Google Scholar 

  • Kapoor VC (1993) Indian fruit flies (Insecta: Diptera: Tephritidae). International Sciences Publisher, New York, p 228

    Google Scholar 

  • Kellner RL (2002) Molecular identification of an endosymbiotic bacterium associated with pederin biosynthesis in Paederus sabaeus (Coleoptera: Staphylinidae). Insect Biochem Mol Biol 32:389–395. https://doi.org/10.1016/S0965-1748(01)00115-1

    Article  CAS  PubMed  Google Scholar 

  • Kostanjsek R, Strus J, Avgustin G (2007) “Candidatus Bacilloplasma”, a novel lineage of mollicutes associated with the hindgut wall of the terrestrial isopod porcellio scaber (Crustacea: Isopoda). Appl Environ Microbiol 73(17):5566–5573. https://doi.org/10.1128/AEM.02468-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langille MGI, Zaneveld J, Caporaso JG, McDonald D et al (2013) Predictive functional profling of microbial communities using 16S rRNA marker gene sequence. Nat Biotechnol 31(9):814–821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lauzon C, McCombs S, Potter S, Peabody N (2009) Establishment and vertical passage of Enterobacter (Pantoea) agglomerans and Klebsiella pneumonia through all life stages of the Mediterranean fruit fly (Diptera: Tephritidae). Ann Entomol Soc Am 102:85–95

    Google Scholar 

  • Leroy PD, Sabri A, Heuskin S, Thonart P, Lognay G et al (2011) Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nat Comm 2:348

    Google Scholar 

  • Letunic I, Bork P (2019) Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:256–259. https://doi.org/10.1093/nar/gkz239

    Article  CAS  Google Scholar 

  • Liu ZX, Huang K, Xiao HD, Chen QH, He JW, Chen YG (2011) Screening and preliminary identification of the antimicrobial strains associated with Anthopleura xanthogrammica. Chin J Antibiot 36:416–420

    CAS  Google Scholar 

  • Liu LJ, Martinez-Sañudo I, Mazzon L, Prabhakar CS, Girolami V, Deng YL, Dai Y, Li ZH (2016) Bacterial communities associated with invasive populations of Bactrocera dorsalis (Diptera: Tephritidae) in China. Bull Entomol Res 106:718–728

    CAS  PubMed  Google Scholar 

  • Liu S, Chen Y, Li W, Tang G, Yang Y, Jiang HB, Dou W, Wang JJ (2018) Diversity of bacterial communities in the intestinal tracts of two geographically distant populations of Bactrocera dorsalis (Diptera: Tephritidae). J Econ Entomol 111(6):2861–2868. https://doi.org/10.1093/jee/toy231

    Article  CAS  PubMed  Google Scholar 

  • Lloyd AC, Drew RAI, Teakle DS, Hayward AC (1986) Bacteria associated with some Dacus species (Diptera: Tephritidae) and their host fruit in Queensland. Aust J Biol Sci 39:361–368

    Google Scholar 

  • Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malacrinò A, Campolo O, Medina RF, Palmeri V (2018) Instar- and host-associated differentiation of bacterial communities in the Mediterranean fruit fly Ceratitis capitata. PLoS One 13(3):e0194131. https://doi.org/10.1371/journal.pone.0194131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina RF, Nachappa P, Tamborindeguy C (2011) Differences in bacterial diversity of host-associated populations of Phylloxer anotabilis Pergande (Hemiptera: Phylloxeridae) in pecan and water hickory. J Evol Biol 24(4):761–71. https://doi.org/10.1111/j.1420-9101.2010.02215.xPMID: 21261774

    Article  CAS  PubMed  Google Scholar 

  • Moll RM, Romoser WS, Modrzakowski MC, Moncayo AC, Lerdthusnee K (2001) Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis. J Med Entomol 38:29–32. https://doi.org/10.1603/0022-2585-38.1.29

    Article  CAS  PubMed  Google Scholar 

  • Morrow JL, Frommer M, Shearman FC, Riegler M (2015) The microbiome of field-caught and laboratory-adapted Australian Tephritid fruit fly species with different host plant use and specialisation. Microb Ecol 70:498–508

    CAS  PubMed  Google Scholar 

  • Naaz N, Choudhary JS, Prabhakar CS, Moanaro MS (2016) Identification and evaluation of cultivable gut bacteria associated with peach fruit fly, Bactrocera zonata (Diptera: Tephritidae). Phytoparasitica 44:165–176

    CAS  Google Scholar 

  • Nakabachi A, Ueoka R, Oshima K, Teta R, Mangoni A, Gurgui M et al (2013) Defensive bacteriome symbiont with a drastically reduced genome. Curr Biol 23:1478–1484. https://doi.org/10.1016/j.cub.2013.06.027

    Article  CAS  PubMed  Google Scholar 

  • Nakajima H, Hongoh Y, Usami R, Kudo T, Ohkuma M (2005) Spatial distribution of bacterial phylotypes in the gut of the termite Reticulitermes speratus and the bacterial community colonizing the gut epithelium. FEMS Microbiol Ecol 54:247–255

    CAS  PubMed  Google Scholar 

  • Niyazi N, Lauzon CR, Shelly TE (2004) Effect of probiotic adult diets on fitness components of Sterile male Mediterranean fruit flies (Diptera: Tephritidae) under laboratory and field cage conditions. J Econ Entomol 97(5):1570–1580

    PubMed  Google Scholar 

  • Noman MS, Liu L, Bai Z, Li Z (2019) Tephritidae bacterial symbionts: potentials for pest management. Bull Entomol Res 1:14. https://doi.org/10.1017/S0007485319000403

    Article  Google Scholar 

  • Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci 100(4):1803–1807. https://doi.org/10.1073/pnas.0335320100PMID: 12563031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parmentier L, Meeus I, Mosallanejad H, de Graaf DC, Smagghe G (2016) Plasticity in the gut microbial community and uptake of Enterobacteriaceae (Gammaproteobacteria) in Bombus terrestris bumblebees’ nests when reared indoors and moved to an outdoor environment. Apidologie 47(2):237–250. https://doi.org/10.1007/s13592-015-0393-7

    Article  Google Scholar 

  • Prabhakar CS, Sood P, Mehta PK (2008) Protein hydrolyzation and pesticide tolerance by gut bacteria of Bactrocera tau (Walker). Pest Manage Econ Zoo 16:123–129

    Google Scholar 

  • Prabhakar C, Sood P, Kapoor V, Kanwar S, Mehta P, Sharma P (2009) Molecular and biochemical characterization of three bacterial symbionts of fruit fly, Bactrocera tau (Tephritidae: Diptera). J Gen Appl Microbiol 55:479–487

    CAS  PubMed  Google Scholar 

  • Putman M, van Veen HW, Konings WN (2000) Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64:672–693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy K, Sharma K, Singh S (2014) Attractancy potential of culturable bacteria from the gut of peach fruit fly, Bactrocera zonata (Saunders). Phytoparasitica. https://doi.org/10.1007/s12600-014-0410-9

    Article  Google Scholar 

  • Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. Peer J 4:e2584

    PubMed  PubMed Central  Google Scholar 

  • Russell JA, Moran NA (2006) Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc R Soc Lond [Biol] 273(1586):603–610. https://doi.org/10.1098/rspb.2005.3348PMID:16537132

    Article  Google Scholar 

  • Sood P, Prabhakar CS (2009) Molecular diversity and antibiotic sensitivity of gut bacterial symbionts of fruit fly Bactrocera tau Walker. J Biol Control 23(3):213–220

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) Mega6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thaochan N, Sittichaya W, Sausa-ard W, Chinajariyawong A (2013) Incidence of Enterobacteriaceae in the larvae of the Polyphagous Insect Bactrocera papayae Drew & Hancock (Diptera: Tephritidae) infesting different host fruits. Philipp Agric Sci 96:384–391

    Google Scholar 

  • Wagner SM, Martinez AJ, Ruan Y-M, Kim KL, Lenhart PA, Dehnel AC et al (2015) Facultative endosymbionts mediate dietary breadth in a polyphagous herbivore. Funct Ecol 29(11):1402–1410. https://doi.org/10.1111/1365-2435.12459

    Article  Google Scholar 

  • Wang A, Yao Z, Zheng W, Zhang H (2014) Bacterial communities in the gut and reproductive organs of Bactrocera minax (Diptera: Tephritidae) based on 454 pyrosequencing. PLoS ONE 9:e106988

    PubMed  PubMed Central  Google Scholar 

  • Wang H, Jin L, Zhang H (2011) Comparison of the diversity of the bacterial communities in the intestinal tract of adult Bactrocera dorsalis from three different populations. J Appl Microbiol 110:1390–1401

    CAS  PubMed  Google Scholar 

  • Wingfield MJ, Garnas JR, Hajek A, Hurley BP, de Beer ZW, Taerum SJ (2016) Novel and co-evolved associations between insects and microorganisms as drivers of forest pestilence. Biol Invasions 18:1045–1056

    Google Scholar 

  • Yong HS, Song SL, Chua KO, Lim PE (2017) High diversity of bacterial communities in developmental stages of Bactrocera carambolae (Insecta: Tephritidae) revealed by IlluminaMiSeq sequencing of 16S rRNA gene. Curr Microbiol 74:1076–1082. https://doi.org/10.1007/s00284-017-1287-x

    Article  CAS  PubMed  Google Scholar 

  • Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C, Bourtzis K (2004) Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci USA 101(42):15042–15045. https://doi.org/10.1073/pnas.0403853101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Zhang X, Chen Z, Wang Z, Lu Y, Cheng D (2018) The divergence in bacterial components associated with Bactrocera dorsalis across developmental stages. Front Microbiol 9:114. https://doi.org/10.3389/fmicb.2018.00114

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the anonymous reviewers and executive editor-in-chief for their valuable comments and suggestion on the earlier version of this paper.

Author information

Authors and Affiliations

Authors

Contributions

NN, JSC and BD designed the study; NN and JSC carried out the experiments; NN and JSC analysed the data; and NN, JSC, AC, AD and BD shared in scoping the study, data interpretation and writing the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Jaipal S. Choudhary.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Accession numbers

The final Sequence Read Achieves (SRAs) of each developmental stage were deposited in the NCBI SRA database with the SRA Accession Numbers: SRX6875946—SRX6875949 under the Bio-Project PRJNA570100.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naaz, N., Choudhary, J.S., Choudhary, A. et al. Developmental stage-associated microbiota profile of the peach fruit fly, Bactrocera zonata (Diptera: Tephritidae) and their functional prediction using 16S rRNA gene metabarcoding sequencing. 3 Biotech 10, 390 (2020). https://doi.org/10.1007/s13205-020-02381-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02381-4

Keywords

Navigation