Skip to main content
Log in

Comparative gut microbiome analysis of the Prakriti and Sasang systems reveals functional level similarities in constitutionally similar classes

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The traditional medicinal systems (TMS) of India (Prakriti) and Korea (Sasang) classify human individuals based on their constitution determined by the physiological and psychological traits of individuals. Similarities in the constitutions are already found between the classes of Prakriti (Vata, Pitta, and Kapha) and Sasang (TE: Taeeumin, SE: Soeumin, and SY: Soyangin) systems. Gut health is an important aspect of this constitution based classification in TMS. To determine the role of gut microbes in such classifications, we have analyzed the gut microbiome (taxa and imputed functions) in the constitutionally similar Prakriti and Sasang classes. An enrichment of Bacteroides and Prevotella enterotypes is observed in the Sasang and Prakriti samples, respectively. The impact of the constitution is found to be more prominent with respect to the taxa and predicted-functions within the Prakriti classes. Gut microbiome functional-level similarities are found to correlate well with the host phenotypes of the constitutionally similar Prakriti and Sasang classes. An enrichment of carbohydrate and amino-acid metabolism is observed in the Vata and SE classes which may be responsible for meeting with their high energy demands and lean phenotype. The Pitta and SY classes exhibit the high capacity to metabolize toxins. An enrichment of functions responsible for predisposition to obesity and high drug metabolism is observed in the Kapha and TE classes. The contribution of gut adaptive functions is found to correlate with the constitution-based classification in both Prakriti and Sasang systems. The TE class harboured the highest number of biofilm-forming and stress-tolerant microbes thus exhibiting the maximum tolerance of environmental stress. Similarities in the gut microbiota and the resulting disease predisposition patterns are found to exist between the constitutionally matching Prakriti and Sasang classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeida et al (2019) A new genomic blueprint of the human gut microbiota. Nature 568:499–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves A, Bassot A, Bulteau AL, Pirola L, Morio B (2019) Glycine metabolism and its alterations in obesity and metabolic diseases. Nutrients 11:1356

    Article  CAS  PubMed Central  Google Scholar 

  • Arumugam et al (2011) Enterotypes of the human gut microbiome. Nature 473:174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhalerao S, Deshpande T, Thatte U (2012) Prakriti (ayurvedic concept of constitution) and variations in platelet aggregation. BMC Complement Altern Med 12:1–5

    Article  Google Scholar 

  • Bodekar G, Graz B (2020) Traditional medicine. In: Hunter’s tropical medicine and emerging infectious diseases content repository only! pp 194–199

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Caporaso et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chae H, Lyoo IK, Lee SJ, Cho S, Bae H, Hong M, Shin M (2003) An alternative way to individualized medicine: psychological and physical traits of Sasang typology. J Altern Complement Med 9:519–528

    Article  PubMed  Google Scholar 

  • Chae H, Lee J, Jeon ES, Kim JK (2017) Personalized acupuncture treatment with Sasang typology. Integr Med Res 6:329–336

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaudhari et al (2019) Understanding the association between the human gut, oral and skin microbiome and the ayurvedic concept of Prakriti. J Biosci 44:112

    Article  PubMed  Google Scholar 

  • Chauhan et al (2018) Western Indian rural gut microbial diversity in extreme Prakriti endo-phenotypes reveals signature microbes. Front Microbiol 9:118

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho NH, Kim JY, Kim SS, Lee SK, Shin C (2014) Predicting type 2 diabetes using S asang constitutional medicine. J Diabetes Investig 5:525–532

    Article  PubMed  Google Scholar 

  • Cole JR et al (2013) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai Z et al (2018) Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome 6:70

    Article  PubMed  PubMed Central  Google Scholar 

  • DeSantis TZ et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhakan DB et al (2019) The unique composition of Indian gut microbiome, gene catalogue, and associated fecal metabolome deciphered using multi-omics approaches. Gigascience 8:giz004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ (2019) Role of the microbiome in human development. Gut 68:1108–1114

    Article  CAS  PubMed  Google Scholar 

  • Duc Pham D, Lee JC, Lee MS, Kim JY (2012) Sasang types may differ in eating rate, meal size, and regular appetite: a systematic literature review. Asia Pac J Clin Nutr 21:327

    Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Ghodke Y, Joshi K, Patwardhan B (2011) Traditional medicine to modern pharmacogenomics: Ayurveda Prakriti type and CYP2C19 gene polymorphism associated with the metabolic variability. Evid Based Complement Altern Med 2011

  • Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369

    PubMed  PubMed Central  Google Scholar 

  • Goodrich et al (2014) Human genetics shape the gut microbiome. Cell 159:789–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govindaraj et al (2015) Genome-wide analysis correlates Ayurveda Prakriti. Sci Rep 5:15786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han YR, Lee HB, Han SY, Kim BJ, Lee SJ, Chae H (2016) Systematic review of type-specific pathophysiological symptoms of Sasang typology. Integr Med Res 5:83–98

    Article  PubMed  Google Scholar 

  • Hou YP et al (2017) Human gut microbiota associated with obesity in Chinese children and adolescents. Biomed Res Int 2017:1–8

    Google Scholar 

  • Jackson MA et al (2018) Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat Commun 9:1–8

    Article  CAS  Google Scholar 

  • Jang E, Baek Y, Park K, Lee S (2013a) Could the Sasang constitution itself be a risk factor of abdominal obesity? BMC Complement Altern Med 13:72–76

    Article  PubMed  PubMed Central  Google Scholar 

  • Jang E, Baek Y, Park K, Lee S (2013b) The Sasang constitution as an independent risk factor for metabolic syndrome: propensity matching analysis. Evid Based Complement Altern Med 2013:1–6

    Google Scholar 

  • Jang HB, Choi MK, Kang JH, Park SI, Lee HJ (2017) Association of dietary patterns with the fecal microbiota in Korean adolescents. BMC Nutr 3:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Jing G et al (2017) Parallel-META 3: comprehensive taxonomical and functional analysis platform for efficient comparison of microbial communities. Sci Rep 7:40371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2013) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karlsson FH et al (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 3:1245

    Article  PubMed  CAS  Google Scholar 

  • Kho ZY, Lal SK (2018) The human gut microbiome–a potential controller of wellness and disease. Front Microbiol 9:1835

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim JY, Pham DD, Koh BH (2011) Comparison of Sasang constitutional medicine, traditional Chinese medicine and Ayurveda. Evid Based Complement Altern Med 2011:1–6

    Google Scholar 

  • Kim BY, Jin HJ, Kim JY (2012) Genome-wide association analysis of Sasang constitution in the Korean population. J Altern Complement Med 18:262–269

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim et al (2013) Comparison of gut microbiota between Sasang constitutions. Evid Based Complement Altern Med 2013:1–9

    Google Scholar 

  • Kim HG, Kim YJ, Ahn YC, Son CG (2015) Serum levels of stress hormones and oxidative stress biomarkers differ according to sasang constitutional type. Evid Based Complement Altern Med 2015:1–6

    Google Scholar 

  • Kim et al (2017) Energy metabolism and whole-exome sequencing-based analysis of Sasang constitution: a pilot study. J Ayurveda Integr Med 6:165–178

    Google Scholar 

  • Kim MJ, Lee DH, Ahn J, Ha TY, Jang YJ, Do E, Jung CH (2018) A pilot study on characteristics of metabolomics and lipidomics according to Sasang constitution. Evid Based Complement Altern Med 2018:1–12

    Google Scholar 

  • Kim SK, Oh Y, Nam S (2019a) Research trends in Korean medicine based on temporal and network analysis. BMC Complement Altern Med 19:160

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim et al (2019b) Metabolite markers for characterizing sasang constitution type through GC–MS and 1H NMR-based metabolomics study. Evid Based Complement Altern Med 2019:1–11

    CAS  Google Scholar 

  • Kim et al (2020) A pilot study exploring the efficacy and safety of herbal medicine on Korean obese women with metabolic syndrome risk factors: double blinded, randomized, multicenter, placebo controlled study protocol clinical trial. Medicine 99:e18955

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwon M, Seo SS, Kim MK, Lee DO, Lim MC (2019) Compositional and functional differences between microbiota and cervical carcinogenesis as identified by shotgun metagenomic sequencing. Cancers 11:309

    Article  CAS  PubMed Central  Google Scholar 

  • Langille MG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee et al (2007) Association between genetic polymorphisms of the CYP2C19, CYP2D6 and types of Sasang constitutional medicine. Prevention 21:1

    Google Scholar 

  • Lee SW, Jang ES, Lee J, Kim JY (2009) Current researches on the methods of diagnosing sasang constitution: an overview. Evid Based Complement Altern Med 6:43–49

    Article  Google Scholar 

  • Lee J, Kang W, Cho J, Cho C, Yoo H, Son C (2013) Cancer incidence varies significantly depending on Sasang constitution of traditional Korean medicine. J Tradit Chin Med 33:312–315

    Article  PubMed  Google Scholar 

  • Lee et al (2015) Association of Sasang constitutional type with sarcopenia. Evid Based Complement Altern Med 2015:1–7

    Google Scholar 

  • Lee S, Lee Y, Lee J (2019) A case report of sweating and palpitation due to chemotherapy for cancer in a soeumin patient with primary central nervous system lymphoma. J Sasang Const Med 31:31–40

    Google Scholar 

  • Lee MK, Hwang M, Oh H, Kim KS (2020) Analysis of Sasang constitutional medicine as an optimal preventive care strategy for hemophilia patients. Biomed Res Int 2020:1–5

    Google Scholar 

  • Liang Q, Lv X, Cai Q, Cai Y, Zhao B, Li G (2018) Novobiocin, a newly found TRPV1 inhibitor, attenuates the expression of TRPV1 in rat intestine and intestinal epithelial cell line IEC-6. Front Pharmacol 9:1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancabelli L, Milani C, Lugli GA, Turroni F, Cocconi D, van Sinderen D, Ventura M (2017) Identification of universal gut microbial biomarkers of common human intestinal diseases by meta-analysis. FEMS Microbiol Ecol 92:fix153

    Google Scholar 

  • Markowitz VM et al (2011) IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 40:D115–D122

    Article  PubMed Central  CAS  Google Scholar 

  • McAleer JP, Kolls JK (2018) Contributions of the intestinal microbiome in lung immunity. Eur J Immunol 48:39–49

    Article  CAS  PubMed  Google Scholar 

  • Mezouar et al (2018) Microbiome and the immune system: From a healthy steady-state to allergy associated disruption. Human Microbiome J 10:11–20

    Article  Google Scholar 

  • Miro-Blanch J, Yanes O (2019) Epigenetic regulation at the interplay between gut microbiota and host metabolism. Front Biol 10:638

    CAS  Google Scholar 

  • Mobeen F, Sharma V, Tulika P (2018) Enterotype variations of the healthy human gut microbiome in different geographical regions. Bioinformation 14:560

    Article  PubMed  PubMed Central  Google Scholar 

  • Mobeen F, Sharma V, Prakash T (2019) Functional signature analysis of extreme Prakriti endophenotypes in gut microbiome of western Indian rural population. Bioinformation 15:490

    Article  PubMed  PubMed Central  Google Scholar 

  • Nam YD, Jung MJ, Roh SW, Kim MS, Bae JW (2011) Comparative analysis of Korean human gut microbiota by barcoded pyrosequencing. PLoS ONE 6:e22109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odamaki T et al (2016) Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol 16:90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pallavi LC, Sivakumar G, Malagi K, Shastry A, Shivaprakash G, Nayak VKR (2018) A comparative study of anthropometric and body composition analysis variables in different human constitution types of Indian traditional medicine. Natl J Physiol Pharm Pharmacol 8:1041–1045

    Google Scholar 

  • Patwardhan B, Mutalik G, Tillu G (2015) Integrative approaches for health: biomedical research, Ayurveda and yoga. Academic Press, New York

    Google Scholar 

  • Prasher B et al (2008) Whole genome expression and biochemical correlates of extreme constitutional types defined in Ayurveda. J Transl Med 6:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prasher B, Gibson G, Mukerji M (2016) Genomic insights into ayurvedic and western approaches to personalized medicine. J Genet 95:209–228

    Article  PubMed  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5:e9490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quast C et al (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rivera-Pinto et al (2018) Balances: a new perspective for microbiome analysis. MSystems 3:e00053-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Rotti et al (2014) Immunophenotyping of normal individuals classified on the basis of human dosha Prakriti. J Ayurveda Integr Med 5:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Rotti et al (2015) DNA methylation analysis of phenotype specific stratified Indian population. J Transl Med 13:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Russell et al (2013) Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol Nutr Food Res 57:523–535

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Mobeen F, Prakash T (2018) Exploration of survival traits, probiotic determinants, host interactions, and functional evolution of bifidobacterial genomes using comparative genomics. Genes 9:477

    Article  PubMed Central  CAS  Google Scholar 

  • Shirolkar A, Chakraborty S, Mandal T, Dabur R (2018) Plasma metabolomics reveal the correlation of metabolic pathways and Prakritis of humans. J Ayurveda Integr Med 9:113–122

    Article  PubMed  Google Scholar 

  • Sitara AM, Chetan M, Yaligar MG (2015) A cross sectional survey to analyse the deha prakruti and the major risk factors of type 2 diabetes mellitus. Int J Res Ayurveda Pharm 6:714–719

    Article  CAS  Google Scholar 

  • Su X, Xu J, Ning K (2012) Meta-storms: efficient search for similar microbial communities based on a novel indexing scheme and similarity score for metagenomic data. Bioinformatics 28:2493–2501

    Article  PubMed  CAS  Google Scholar 

  • Tandon D, Haque MM, Saravanan R, Shaikh S, Sriram P, Dubey AK, Mande SS (2018) A snapshot of gut microbiota of an adult urban population from Western region of India. PLoS ONE 13:e0195643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tian L, Wu AK, Friedman J, Waldor MK, Weiss ST, Liu YY (2017) Deciphering functional redundancy in the human microbiome. bioRxiv: 176313

  • Ticinesi et al (2019) Gut microbiota, muscle mass and function in aging: a focus on physical frailty and sarcopenia. Nutrients 11:1633

    Article  CAS  PubMed Central  Google Scholar 

  • Travis FT, Wallace RK (2015) Dosha brain-types: a neural model of individual differences. J Ayurveda Integr Med 6:280

    Article  PubMed  PubMed Central  Google Scholar 

  • Van de Wiele T, Vanhaecke L, Boeckaert C, Peru K, Headley J, Verstraete W, Siciliano S (2004) Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites. Environ Health Perspect 113:6–10

    Article  PubMed Central  CAS  Google Scholar 

  • Visconti et al (2019) Interplay between the human gut microbiome and host metabolism. Nat Commun 10:1–10

    Article  CAS  Google Scholar 

  • Voreades N, Kozil A, Weir TL (2014) Diet and the development of the human intestinal microbiome. Front Microbiol 5:494

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward T et al (2017) BugBase predicts organism level microbiome phenotypes. BioRxiv: 133462

  • Wattam AR et al (2013) PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res 42:D581–D591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson ID, Nicholson JK (2017) Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res 179:204–222

    Article  CAS  PubMed  Google Scholar 

  • Won et al (2009) A genome-wide scan for the Sasang constitution in a Korean family suggests significant linkage at chromosomes 8q11. 22–23 and 11q22. 1–3. J Altern Complement Med 15:765–769

    Article  PubMed  Google Scholar 

  • Yadav R, Kumar V, Baweja M, Shukla P (2018) Gene editing and genetic engineering approaches for advanced probiotics: a review. Crit Rev Food Sci Nutr 58:1735–1746

    Article  CAS  PubMed  Google Scholar 

  • Yadav M, Mandeep SP (2019) Probiotics of diverse origin and their therapeutic applications: a review. J Am Coll Nutr 39:1–11

    Google Scholar 

  • Yi et al (2019) Traditional Korean medicine-based forest therapy programs providing electrophysiological benefits for elderly individuals. Int J Environ Res Public Health 16:4325

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by DBT Ramalingaswami fellowship of TP. FM and VS acknowledge the Ministry of Human Resource Development (MHRD), India for providing research fellowships.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

TP and FM conceived of or designed study, TP and FM performed research, TP, FM, and VS analyzed data, TP and FM wrote the paper. All authors read and approved the paper.

Corresponding author

Correspondence to Tulika Prakash.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mobeen, F., Sharma, V. & Prakash, T. Comparative gut microbiome analysis of the Prakriti and Sasang systems reveals functional level similarities in constitutionally similar classes. 3 Biotech 10, 379 (2020). https://doi.org/10.1007/s13205-020-02376-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02376-1

Keywords

Navigation