Skip to main content
Log in

Inhibition of pathogenic Vibrio harveyi using calamenene, derived from the Indian gorgonian Subergorgia reticulata, and its synthetic analog

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

We report the synthesis and antimicrobial properties of a partially reduced dihydronathphthoquinone analogue of 2-methoxy, 5-acetoxy calamenene, extracted from Subergorgia reticulata. The growth of a pathogenic Vibrio harveyi strain was effectively controlled by the calamenene derivative 1 (Cala1) and its synthetic analog 2 (Cala2). Complete mortality of V. harveyi was observed with 2.5 and 0.5 µg mL−1 concentrations of Cala1 and Cala2, respectively. The metabolic assays demonstrated that Cala1 is a bacteriostatic agent while Cala2 showed bactericidal properties. It was confirmed that translocation of Cala2 into the cytoplasm does not induce any change to the integrity of the bacterial cell wall. The Cala2 induced damage to the genetic material of 70% of cells while genetic material of 91% of cells treated with Cala1 remained intact. The Cala2 is, therefore, proposed as a potential bactericidal compound against the aquaculture pathogen V. harveyi. The fact that the Cala2 exhibited minimal cytotoxicity to Artemia nauplii indicates its potential use as an antimicrobial agent for aquaculture operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali MFZ, Yasin IA, Ohta T, Hashizume A, Ido A, Takahashi T, Miura C, Miura T (2018) The silkrose of Bombyx mori effectively prevents vibriosis in penaeid prawns via the activation of innate immunity. Sci Rep 8(1):8836. https://doi.org/10.1038/s41598-018-27241-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anas A, Jiya J, Rameez MJ, Anand PB, Anantharaman MR, Nair S (2013) Sequential interactions of silver–silica nanocomposite (Ag–SiO2NC) with cell wall, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple antibiotic-resistant bacterium. Lett Appl Microbiol 56(1):57–62. https://doi.org/10.1111/lam.12015

    Article  CAS  PubMed  Google Scholar 

  • Asok A, Arshad E, Jasmin C, Somnath Pai S, Bright Singh I, Mohandas A, Anas A (2012) Reducing Vibrio load in Artemia nauplii using antimicrobial photodynamic therapy: a promising strategy to reduce antibiotic application in shrimp larviculture. Microb Biotechnol 5(1):59–68

    Article  CAS  Google Scholar 

  • Asplund ME, Rehnstam-Holm A-S, Atnur V, Raghunath P, Saeavanan V, Harnstrom K, Collin B, Karunasagar I, Godhe A (2011) Water column dynamics of Vibrio in relation to phytoplankton community composition and environmental conditions in a tropical coastal area. Environ Microbiol 13(10):2738–2751

    Article  Google Scholar 

  • Azevedo MMB, Chavesm FCM, Almeida CA, Bizzo HR, Duarte RS, Campos-Takaki GM, Alviano CS, Alviano DS (2013) Antioxidant and antimicrobial activities of 7-hydroxy-calamenene-rich essential oils from Croton cajucara Benth. Molecules 18:1128–1137

    Article  CAS  Google Scholar 

  • Benoit-Vical F, Valentin A, Mallíe M, Bastide J-M, Bessière J-M (1999) In vitro antimalarial activity and cytotoxicity of Cochlospermum tinctorium and C. planchonii leaf extracts and essential oils. Planta Med 65(04):378–381. https://doi.org/10.1055/s-2006-960794

    Article  CAS  PubMed  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250

    Article  CAS  Google Scholar 

  • Burres NS, Barber DA, Gunasekera SP, Shen LL, Clement JJ (1991) Antitumor activity and biochemical effects of topsentin. Biochem Pharmacol 42(4):745–751

    Article  CAS  Google Scholar 

  • Correa H, Aristizabal F, Duque C, Kerr R (2011) Cytotoxic and antimicrobial activity of pseudopterosins and seco-pseudopterosins isolated from the octocoral Pseudopterogorgia elisabethae of San Andres and Providencia Islands (Southwest Caribbean Sea). Mar Drugs 9(3):334–344

    Article  CAS  Google Scholar 

  • Essack M, Bajic VB, Archer JAC (2011) Recently confirmed apoptosis-inducing lead compounds isolated from marine sponge of potential relevance in cancer treatment. Mar Drugs 9(9):1580–1606

    Article  CAS  Google Scholar 

  • Fenical W, Pawlik J (1991) Defensive properties of secondary metabolites from the Caribbean gorgonian coral Erythropodium caribaeorum. Mar Ecol Prog Ser 75(1):1–8

    Article  CAS  Google Scholar 

  • Gordaliza M (2012) Synthetic strategies to terpene quinines/hydroquinones. Mar Drugs 10(2):358–402

    Article  CAS  Google Scholar 

  • Griffitt KJ III, Johnson CN, Jay Grimes D (2011) Enumeration of Vibrio parahaemolyticus in the viable but nonculturable state using direct plate counts and recognition of individual gene fluorescence in situ hybridization. J Microbiol Methods 85:114–118

    Article  CAS  Google Scholar 

  • Haefner B (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discov Today 8(12):536–544

    Article  CAS  Google Scholar 

  • Harvell C, Fenical W, Greene C (1988) Chemical and structural defenses of Caribbean gorgonians (Pseudopterogorgia spp.). 1. Development of an in situ feeding assay. Mar Ecol Prog Ser 49(3):287–294

    Article  Google Scholar 

  • Heidarieh M, Mirvaghefi AR, Akbari M, Farahmand H, Sheikhzadeh N, Shahbazfar AA, Behgar M (2012) Effect of dietary Ergosan on growth performance, digestive enzymes, intestinal histology, hematological parameters and body composition of rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 38:1169–1174

    Article  CAS  Google Scholar 

  • Hunt LR, Smith SM, Downum KR, Mydlarz LD (2012) Microbial regulation in gorgonian corals. Marine Drugs 10(6):1225–1243

    Article  CAS  Google Scholar 

  • Jones RM, Bulaj G (2000) Conotoxins-new vistas for peptide therapeutics. Curr Pharm Des 6(12):1249–1285

    Article  CAS  Google Scholar 

  • Jose J, Anas A, Jose B, Puthirath AB, Athiyanathil S, Jasmin C, Anantharaman MR, Nair S, Subrahmanyam C, Biju V (2019) Extinction of antimicrobial resistant pathogens using silver embedded silica nanoparticles and an efflux pump blocker. ACS Appl Biomater 2(11):4681–4686. https://doi.org/10.1021/acsabm.9b00614

    Article  CAS  Google Scholar 

  • Kanjana K, Radtanatip T, Asuvapongpatana S, Withyachumnarnkul B, Wongprasert K (2011) Solvent extracts of the red seaweed Gracilaria fisheri prevent Vibrio harveyi infections in the black tiger shrimp Penaeus monodon. Fish Shellfish Immunol 30(1):389–396. https://doi.org/10.1016/j.fsi.2010.11.016

    Article  PubMed  Google Scholar 

  • Kelman D, Kushmaro A, Loya Y, Kashman Y, Benayahu Y (1998) Antimicrobial activity of a Red Sea soft coral, Parerythropodium fulvum fulvum: reproductive and developmental considerations. Mar Ecol Prog Ser 169:87–95

    Article  Google Scholar 

  • Kelman D, Benayahu Y, Kashman Y (2000) Chemical defence of the soft coral Parerythropodium fulvum fulvum (Forskal) in the Red Sea. J Exp Mar Biol Ecol 243:309–312

    Article  Google Scholar 

  • Kim MK, Park J, Chong Y (2012) Aromatic hydroxyl group plays a critical role in antibacterial activity of the curcumin analogues. Nat Prod Commun 7(1):57

    CAS  PubMed  Google Scholar 

  • Kohanski MA, Dwyer DJ, Collins JJ (2010) How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 8(6):423–435. https://doi.org/10.1038/nrmicro2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langeveld WT, Veldhuizen EJA, Burt SA (2014) Synergy between essential oil components and antibiotics: a review. Crit Rev Microbiol 40(1):76–94. https://doi.org/10.3109/1040841X.2013.763219

    Article  CAS  PubMed  Google Scholar 

  • Limna Mol VP, Raveendran TV, Naik BG, Kunnath RJ, Parameswaran PS (2011) Calamenenes—aromatic monocyclic sesquiterpenes from the Indian gorgonian Subergorgia reticulata. Nat Prod Res 25(2):169–174

    Article  CAS  Google Scholar 

  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PKH, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5(4):916–924

    Article  CAS  Google Scholar 

  • Marques A, Dhont J, Sorgeloos P, Bossier P (2004) Evaluation of different yeast cell wall mutants and microalgae strains as feed for gnotobiotically grown brine shrimp Artemia franciscana. J Exp Mar Biol Ecol 312(1):115–136. https://doi.org/10.1016/j.jembe.2004.06.008

    Article  CAS  Google Scholar 

  • Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43(S):93–100

    PubMed  Google Scholar 

  • Overton SV, Bland CE (1981) Infection of Artemia salina by Haliphthoros milfordensis: a scanning and transmission electron microscope study. J Invertebr Pathol 37(3):249–257. https://doi.org/10.1016/0022-2011(81)90083-5

    Article  Google Scholar 

  • Racault M-F, Abdulaziz A, George G, Menon N, Punathil M, McConville K, Loveday B, Platt T, Sathyendranath S, Vijayan V (2019) Environmental reservoirs of Vibrio cholerae: challenges and opportunities for ocean-color remote sensing. Remote Sens 11(23):2763

    Article  Google Scholar 

  • Raveendran TV, Limna Mol VP, Parameswaran PS (2011) Natural product antifoulants from the Octocorals of Indian waters. Int Biodeterior Biodegrad 65(1):265–268

    Article  CAS  Google Scholar 

  • Reddy DRS, Audipudi AV, Reddy GD (2011) Antioxidant, antiinflammatory and antifungal activity of marine sponge subergargoria suberosa-derived natural products. Int J PharmTech Res 3(1):342–348

    Google Scholar 

  • Sahul Hameed A, Balasubramanian G (2000) Antibiotic resistance in bacteria isolated from Artemia nauplii and efficacy of formaldehyde to control bacterial load. Aquaculture 183(3):195–205

    Article  CAS  Google Scholar 

  • Santhakumari S, Kannappan A, Pandian SK, Thajuddin N, Rajendran RB, Ravi AV (2016) Inhibitory effect of marine cyanobacterial extract on biofilm formation and virulence factor production of bacterial pathogens causing vibriosis in aquaculture. J Appl Phycol 28(1):313–324

    Article  CAS  Google Scholar 

  • Schug T, Abagyan R, Blumberg B, Collins T, Crews D, DeFur P, Dickerson S, Edwards T, Gore A, Guillette L (2013) Designing endocrine disruption out of the next generation of chemicals. Green Chem 15(1):181–198

    Article  CAS  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191

    Article  CAS  Google Scholar 

  • Slattery M, McClintock JB, Heine JN (1995) Chemical defenses in Antarctic soft corals: evidence for antifouling compounds. J Exp Mar Biol Ecol 190(1):61–77

    Article  CAS  Google Scholar 

  • Thakur NL, Thakur AN, Muller WEG (2005) Marine natural products in drug discovery. Nat Prod Radiance 4(6):471–477

    Google Scholar 

  • Vandenberghe J, Li Y, Verdonck L, Li J, Sorgeloos P, Xu H, Swings J (1998) Vibrios associated with Penaeus chinensis (Crustacea: Decapoda) larvae in Chinese shrimp hatcheries. Aquaculture 169(1):121–132

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Directors of CSIR—National Institute of Oceanography, Goa and the Scientist-in-Charge, NIO Regional Centre, Kochi, for extending all required support in carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anas Abdulaziz.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1249 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Limna Mol, V.P., Abdulaziz, A., Sneha, K.G. et al. Inhibition of pathogenic Vibrio harveyi using calamenene, derived from the Indian gorgonian Subergorgia reticulata, and its synthetic analog. 3 Biotech 10, 248 (2020). https://doi.org/10.1007/s13205-020-02241-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02241-1

Keywords

Navigation