Skip to main content

Advertisement

Log in

Amyloid beta peptide-degrading microbial enzymes and its implication in drug design

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a chronic and progressive neurological brain disorder. AD pathophysiology is mainly represented by formation of neuritic plaques and neurofibrillary tangles (NFTs). Neuritic plaques are made up of amyloid beta (Aβ) peptides, which play a central role in AD pathogenesis. In AD brain, Aβ peptide accumulates due to overproduction, insufficient clearance and defective proteolytic degradation. The degradation and cleavage mechanism of Aβ peptides by several human enzymes have been discussed previously. In the mean time, numerous experimental and bioinformatics reports indicated the significance of microbial enzymes having potential to degrade Aβ peptides. Thus, there is a need to shift the focus toward the substrate specificity and structure–function relationship of Aβ peptide-degrading microbial enzymes. Hence, in this review, we discussed in vitro and in silico studies of microbial enzymes viz. cysteine protease and zinc metallopeptidases having ability to degrade Aβ peptides. In silico study showed that cysteine protease can cleave Aβ peptide between Lys16–Cys17; similarly, several other enzymes also showed capability to degrade Aβ peptide at different sites. Thus, this review paves the way to explore the role of microbial enzymes in Aβ peptide degradation and to design new lead compounds for AD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References:s

  • Aprahamian I, Stella F, Forlenza OV (2013) New treatment strategies for Alzheimer’s disease: is there a hope? Indian J Med Res 138:449–460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Backstrom JR, Lim GP, Cullen MJ, Tokes ZA (1996) Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-beta peptide (1–40). J Neurosci 16:7910–7919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377:1019–1031

    Article  PubMed  Google Scholar 

  • Ballatore C, Lee VM, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8:663–672

    Article  CAS  PubMed  Google Scholar 

  • Barage SH, Sonawane KD (2015) Amyloid cascade hypothesis: pathogenesis and therapeutic strategies in Alzheimer's disease. Neuropeptides 52:1–18

    Article  CAS  PubMed  Google Scholar 

  • Barale S, Parulekar R, Fandilolu P, Dhanavade M, Sonawane K (2019) Molecular insights into destabilization of Alzheimer’s Aβ protofibril by arginine containing short peptides: a molecular modeling approach. ACS Omega 4(1):892–903

    Article  CAS  Google Scholar 

  • Baranello R, Bharani K, Padmaraju V, Chopra N, Lahiri D, Greig N, Pappolla M, Sambamurti K (2015) Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer’s Disease. Curr Alzheimer Res 12(1):32–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bateman R, Siemers E, Mawuenyega K, Wen G, Browning K, Sigurdson W, Yarasheski K, Friedrich S, Demattos R, May P, Paul S, Holtzman D (2009) A gamma secretase inhibitor decreases amyloid-beta production in the central nervous system. Ann Neurol 66:48–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borghammera P, Berge N (2019) Brain-first versus gut-first Parkinson’s disease: a hypothesis. J Parkinson’s Dis 9:S281–S295

    Article  CAS  Google Scholar 

  • Briguglio M, Dell’Osso B, Panzica G, Malgaroli A, Banfi G, Zanaboni Dina C, Galentino R, Porta M (2018) Dietary neurotransmitters: a narrative review on current knowledge. Nutrients 10:591

    Article  CAS  PubMed Central  Google Scholar 

  • Brunden K, Trojanowski J, Lee V (2009) Advances in taufocused drug discovery for Alzheimer’s disease and related tauopathies. Nat Rev Drug Discov 8:783–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cataldo A, Nixon R (1990) Enzymatically active lysosomal proteases are associated with amyloid deposits in Alzheimer brain. Proc Natl Acad Sci USA 87:3861–3865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cataldo A, Barnett J, Pieroni C, Nixon R (1997) Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer’s disease: neuropathologic evidence for a mechanism of increased β-amyloidogenesis. J Neurosci 17:6142–6151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cimerman N, Prebanda M, Turk B, Popovic T, Dolenc I, Turk V (1999) Interaction of cystatin C variants with papain and human cathepsins B, H and L. J Enzyme Inhib 14:167–174

    Article  CAS  PubMed  Google Scholar 

  • Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K (2019) Alzheimer's disease drug development pipeline: 2019. Alzheimers Dement (N Y) 5:272–293

    Article  Google Scholar 

  • De Chiara G, Marcocci M, Civitelli L, Argnani R, Piacentini R, Ripoli C et al (2010) APP processing induced by herpes simplex virus type 1 (HSV-1) yields several APP fragments in human and rat neuronal cells. PLoS ONE 5:e13989

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • De la Torre J (2004) Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol 3:184–190

    Article  PubMed  Google Scholar 

  • Deb S, Gottschall PE (1996) Increased production of matrix metalloproteinases in enriched astrocyte and mixed hippocampal cultures treated with beta-amyloid peptides. J Neurochem 66:1641–1647

    Article  CAS  PubMed  Google Scholar 

  • Dhanavade M, Sonawane K (2014) Insights into the molecular interactions between aminopeptidase and amyloid beta peptide using molecular modeling techniques. Amino Acids 46:1853–1866

    Article  CAS  PubMed  Google Scholar 

  • Dhanavade M, Jalkute C, Barage S, Sonawane K (2013) Homology modeling, molecular docking and MD simulation studies to investigate role of cysteine protease from Xanthomonas campestris in degradation of Ab peptide. Comput Biol Med 43:2063–2070

    Article  CAS  PubMed  Google Scholar 

  • Eckman E, Reed D, Eckman C (2001) Degradation of the Alzheimer’s amyloid beta peptide by endothelin-converting enzyme. J Biol Chem 276:24540–24548

    Article  CAS  PubMed  Google Scholar 

  • Fede G, Catania M, Morbin M, Rossi G, Suardi S, Mazzoleni G, Merlin M, Giovagnoli A, Prioni S, Erbetta A, Falcone C, Gobbi M, Colombo L, Bastone A, Beeg M, Manzoni C, Francescucci B, Spagnoli A, Cantù L, Del Favero E, Levy E, Salmona M, Tagliavini F (2009) A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis. Science 323:1473–1477

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Frautschy S, Horn D, Sigel J, Harris-White M, Mendoza J, Yang F, Saido T, Cole G (1998) Protease inhibitor coinfusion with amyloid beta-protein results in enhanced deposition and toxicity in rat brain. J Neurosci 18:8311–8321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giau V, An S, Hulme J (2018a) Mitochondrial therapeutic interventions in Alzheimer’s disease. J Neuro Sci. https://doi.org/10.1016/j.jns.2018.09.033

    Article  Google Scholar 

  • Giau V, Wu S, Jamerlan A, An S, Kim S, Hulme J (2018b) Gut microbiota and their neuroinflammatory implications in Alzheimer’s disease. Nutrients 10:1765–1782

    Article  CAS  PubMed Central  Google Scholar 

  • Glabe C (2001) Intracellular mechanisms of amyloid accumulation and pathogenesis in Alzheimer’s disease. J Mol Neurosci 17:137–145

    Article  CAS  PubMed  Google Scholar 

  • Glenner G, Wong C (1984) Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    Article  CAS  PubMed  Google Scholar 

  • Gottschall P (1996) beta-Amyloid induction of gelatinase B secretion in cultured microglia: inhibition by dexamethasone and indomethacin. NeuroReport 7:3077–3080

    Article  CAS  PubMed  Google Scholar 

  • Gouras G, Xu H, Jovanovic J, Buxbaum J, Wang R, Greengard P, Relkin N, Gandy S (1998) Generation and regulation of beta-amyloid peptide variants by neurons. J Neurochem 71:1920–1925

    Article  CAS  PubMed  Google Scholar 

  • Hamazaki H (1996) Cathepsin D is involved in the clearance of Alzheimer’s beta-amyloid protein. FEBS Lett 396:139–142

    Article  CAS  PubMed  Google Scholar 

  • Haran J, Bhattarai S, Foley S, Dutta P, Ward D, Bucci V, McCormickb B (2019) Alzheimer’s disease microbiome is associated with dysregulation of the anti-inflammatory P-glycoprotein pathway. mbio 10:e00632–e719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy J, Selkoe D (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  • Harris S, Harris E (2018) Molecular mechanisms for herpes simplex virus type 1 pathogenesis in Alzheimer’s disease. Front Aging Neurosci 10:48–72

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hawkes C, Hartig W, Kacza J, Schliebs R, Weller R, Nicoll J, Carare R (2011) Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol 121:431–443

    Article  PubMed  Google Scholar 

  • Henley D, May P, Dean R, Siemers E (2009) Development of semagacestat (LY450139), a functional gamma-secretase inhibitor, for the treatment of Alzheimer’s disease. Expert Opin Pharmacother 10:1657–1664

    Article  CAS  PubMed  Google Scholar 

  • Honjo K, van Reekum R, Verhoeff N (2009) Alzheimer’s disease and infection: do infectious agents contribute to progression of Alzheimer’s disease? Alzheimers Dement 5:348–360

    Article  PubMed  Google Scholar 

  • Hsu R, Lee K, Wang J, Lily Y, Lee L, Rita P, Chen Y (2009) Amyloid-degrading ability of Nattokinase from Bacillus subtilis Natto. J Agric Food Chem 57:503–508

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Igarashi A, Kamata M, Nakagawa H (2001) Angiotensin converting enzyme degrades Alzheimer amyloid beta-peptide (A beta); retards A beta aggregation, deposition, fibril formation; and inhibits cytotoxicity. J Biol Chem 276:47863–47868

    Article  CAS  PubMed  Google Scholar 

  • Hui K (2007) Neuropeptidases. In: Lajtha A, Banik N (eds) Handbook of neurochemistry and molecular neurobiology: neural protein metabolism and function, vol 7, 3rd edn. Springer, Berlin

    Google Scholar 

  • Itzhaki R, Cosby S, Wozniak M (2008) Herpes simplex virus type 1 and Alzheimer’s disease: the autophagy connection. J Neurovirol 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard NP, Gerard C, Hama E, Lee HJ, Saido TC (2001) Metabolic regulation of brain Aβ by neprilysin. Science 292:1550–1552

    Article  CAS  PubMed  Google Scholar 

  • Jalkute C, Barage S, Dhanavade M, Sonawane K (2015) Insight into molecular interactions of Aβ peptide and gelatinase from Enterococcus faecalis: a molecular modeling approach. RSC Adv 5:10488–10496

    Article  CAS  Google Scholar 

  • Jung S, Zhang W, Van Nostrand W (2003) Pathogenic A beta induces the expression and activation of matrix metalloproteinase-2 in human cerebrovascular smooth muscle cells. J Neurochem 85:1208–1215

    Article  CAS  PubMed  Google Scholar 

  • Kurochkin I, Goto S (1994) Alzheimer’s beta-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme. FEBS Lett 345:33–37

    Article  CAS  PubMed  Google Scholar 

  • Kuruppua S, Rajapakseb N, Spicerd A, Parkingtonc H, Smith A (2016) Stimulating the activity of amyloid-beta degrading enzymes: a novel approach for the therapeutic manipulation of amyloid-beta levels. J Alzheimers Dis 54:891–895

    Article  CAS  Google Scholar 

  • Leissring M, Farris W, Chang A, Walsh D, Wu X, Sun X, Frosch M, Selkoe D (2003) Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40:1087–1093

    Article  CAS  PubMed  Google Scholar 

  • Lendeckel U, Arndt M, Frank K, Spiess A, Reinhold D, Ansorge S (2000) Modulation of WNT-5A expression by actinonin: linkage of APN to the WNT-pathway? Adv Exp Med Biol 477:35–41

    Article  CAS  PubMed  Google Scholar 

  • Loncarevic N, Mehmedika-Sulic E, Alajibegovic A (2005) The neurologist role in diagnostics and therapy of the Alzheimer’s disease. Med Arc 59(2):106–109

    Google Scholar 

  • Love S, Miners S, Palmer J, Chalmers K, Kehoe P (2009) Insights into the pathogenesis and pathogenicity of cerebral amyloid angiopathy. Front Biosci 14:4778–4792

    Article  CAS  Google Scholar 

  • Lyte M, Villageliú D, Crooker B, Brown D (2018) Symposium review: microbial endocrinology—why the integration of microbes, epithelial cells, and neurochemical signals in the digestive tract matters to ruminant health1. J Dairy Sci 101:5619–5628

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari P, Eslick G (2015) Bacterial infection and Alzheimer’s disease: a meta-analysis. J Alzheimers Dis 43:957–966

    Article  PubMed  Google Scholar 

  • Maruyama M, Higuchi M, Takaki Y, Matsuba Y, Tanji H, Nemoto M, Tomita N, Matsui T, Iwata N, Mizukami H, Muramatsu S, Ozawa K, Saido TC, Arai H, Sasaki H (2005) Cerebrospinal fluid neprilysin is reduced in prodromal Alzheimer’s disease. Ann Neurol 57:832–842

    Article  CAS  PubMed  Google Scholar 

  • Masters C, Simms G, Weinman N, Multhaup G, McDonald B, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDermott J, Gibson A (1997) Degradation of Alzheimer’s beta-amyloid protein by human and rat brain peptidases: involvement of insulin-degrading enzyme. Neurochem Res 22:49–56

    Article  CAS  PubMed  Google Scholar 

  • Medeiros R, Baglietto-Vargas D, LaFerla F (2011) The Role of tau in Alzheimer's Disease and related disorders. CNS Neurosci Ther 17(5):514–524

    Article  CAS  PubMed  Google Scholar 

  • Miklossy J (2011a) Alzheimer’s disease_a neurospirochetosis. Analysis of the evidence following Koch’s and Hill’s criteria. J Neuroinflammation 8:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Miklossy J (2011b) Emerging roles of pathogens in Alzheimer disease. Expert Rev Mol Med 13:e30

    Article  PubMed  CAS  Google Scholar 

  • Miners J, Baig S, Palmer J, Palmer L, Kehoe P, Love S (2008) A beta-degrading enzymes in Alzheimer's disease. Brain Pathol 18:240–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris G, Huey R, Lindstrom W, Sanner M, Belew R, Goodsell D, Olson A (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mort J, Buttle D (1997) Cathepsin B. Int J Biochem Cell Biol 29:715–720

    Article  CAS  PubMed  Google Scholar 

  • Mueller-Steiner S, Zhou Y, Arai H, Roberson E, Sun B, Chen J, Wang X, Yu G, Esposito L, Mucke L, Gan L (2006) Antiamyloidogenic and neuroprotective functions of cathepsinB: implications for Alzheimer's disease. Neuron 51:703–714

    Article  CAS  PubMed  Google Scholar 

  • Nalivaeva N, Fisk L, Belyaev N, Turner A (2008) Amyloid-degrading enzymes as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res 5:212–224

    Article  CAS  PubMed  Google Scholar 

  • Ningthoujama D, Mukherjeea S, Devia L, Singha E, Tamreihaoa K, Khunjamayuma R, Banerjeeb S, Mukhopadhyay D (2019) In vitro degradation of β-amyloid fibrils by microbial keratinase. Alzheimer’s Dementia Transl Res Clin Interv 5:154–163

    Article  Google Scholar 

  • Nishino R, Mikami K, Takahashi H, Tomonaga S, Furuse M, Hiramoto T, Aiba Y, Koga Y, Sudo N (2013) Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods. Neurogastroenterol Motil 25:521–528

    Article  CAS  PubMed  Google Scholar 

  • Parsons C, Danysz W, Dekundy A, Pulte I (2013) Memantine and cholinesterase inhibitors: complementary mechanisms in the treatment of Alzheimer’s disease. Neurotox Res 24:358–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole S, Singhrao S, Kesavalu L, Curtis M, Crean S (2013) Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer’s disease brain tissue. J Alzheimers Dis 36:665–677

    Article  CAS  PubMed  Google Scholar 

  • Qiu W, Borth W, Ye Z, Haass C, Teplow D, Selkoe D (1996) Degradation of amyloid beta-protein by a serine proteasealpha2-macroglobulin complex. J Biol Chem 271:8443–8451

    Article  CAS  PubMed  Google Scholar 

  • Qiu W, Walsh D, Ye Z, Vekrellis K, Zhang J, Podlisny M, Rosner M, Safavi A, Hersh L, Selkoe D (1998) Insulin-degrading enzyme regulates extra-cellular levels of amyloid β-protein by degradation. J Biol Chem 273:32730–32738

    Article  CAS  PubMed  Google Scholar 

  • Rangan S, Liu R, Brune D, Planque S, Paul S, Sierks M (2003) Degradation of beta-amyloid by proteolytic antibody light chains. J Biochem 42:14328–14334

    Article  CAS  Google Scholar 

  • Reitz C (2012) Alzheimer’s Disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimer’s Dis. https://doi.org/10.1155/2012/369808

    Article  Google Scholar 

  • Ribaric S (2018) Peptides as potential therapeutics for Alzheimer’s Disease. Molecules 23:283–313

    Article  CAS  PubMed Central  Google Scholar 

  • Riviere G, Riviere K, Smith K (2002) Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer’s disease. Oral Microbiol Immunol 17:113–118

    Article  CAS  PubMed  Google Scholar 

  • Roher A, Kasunic T, Woods A, Cotter R, Ball M, Fridman R (1994) Proteolysis of A beta peptide from Alzheimer disease brain by gelatinase A. Biochem Biophys Res Commun 205:1755–1761

    Article  CAS  PubMed  Google Scholar 

  • Rowsell S, Hawtin P, Minshull C, Jepson H, Brockbank S, Barratt D, Slater A, McPheat W, Waterson D, Henney A, Pauptit R (2002) Crystal structure of human MMP9 in complex with a reverse hydroxamate inhibitor. J Mol Biol 319(1):173–181

    Article  CAS  PubMed  Google Scholar 

  • Russo C, Saido T, DeBusk L, Tabaton M, Gambetti P, Teller J (1997) Heterogeneity of water-soluble b-peptide in Alzheimer’s disease and Down’s syndrome brains. FEBS Lett 409:411–416

    Article  CAS  PubMed  Google Scholar 

  • Saido T, Yamao-Harigaya W, Iwatsubo T, Kawashima S (1996) Amino-and carboxy-terminal heterogeneity of b-amyloid peptides deposited in human brain. Neurosci Lett 215:173–176

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-López E, Ettcheto M, Egea M, Espina M, Cano A, Calpena A, Camins A, Carmona N, Silva A, Souto E, García M (2018) Memantine loaded PLGA PEGylated nanoparticles for Alzheimer's disease: in vitro and in vivo characterization. J Nanobiotechnol 16(1):32. https://doi.org/10.1186/s12951-018-0356-z

    Article  CAS  Google Scholar 

  • Sasaki H, Saito Y, Hayashi M, Otsuka K, Niwa M (1988) Nucleotide sequence of the tissue-type plasminogen activator cDNA from human fetal lung cells. Nucleic Acids Res 16(12):5692

    Article  Google Scholar 

  • Schneider L, Insel P, Weiner M (2011) Treatment with cholinesterase inhibitors and memantine of patients in the Alzheimer’s disease neuroimaging initiative treatment with ChEIs and Memantine in ADNI. Arch Neurol 68:58–66

    Article  PubMed  PubMed Central  Google Scholar 

  • Sevalle J, Amoyel A, Robert P, Fournié-Zaluski M, Roques B, Checler F (2009) Aminopeptidase A contributes to the N-terminal truncation of amyloid b-peptide. J Neurochem 109:248–256

    Article  CAS  PubMed  Google Scholar 

  • Shima K, Kuhlenbäumer G, Rupp J (2010) Chlamydia pneumonia infection and Alzheimer’s disease: a connection to remember? Med Microbiol Immunol 199:283–289

    Article  PubMed  Google Scholar 

  • Sikanyika N, Parkington H, Smith A, Kuruppu S (2019) Powering amyloid beta degrading enzymes: a possible therapy for Alzheimer’s Disease. Neurochem Res. https://doi.org/10.1007/s11064-019-02756-x

    Article  PubMed  Google Scholar 

  • Sochocka M, Donskow-Łysoniewska K, Diniz B, Kurpas D, Brzozowska E, Leszek J (2019) The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s Disease—a critical review. Mol Neurobiol 56(3):1841–1851

    Article  CAS  PubMed  Google Scholar 

  • Stakos D, Stamatelopoulos K, Bampatsias D, Sachse M, Zormpas E, Vlachogiannis N, Tual-Chalot S, Stellos K (2020) The Alzheimer’s Disease amyloid-beta hypothesis in cardiovascular aging and disease. J Am Coll Cardiol 75(8):952–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoltze L, Schirle M, Schwarz G, Schroter C, Thompson M, Hersh L, Kalbacher H, Stevanovic S, Rammensee H, Schild H (2000) Two new proteases in the MHC class I processing pathway. Nat Immunol 1:413–418

    Article  CAS  PubMed  Google Scholar 

  • Tanzi R, Bertram L (2005) Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 120:545–555

    Article  CAS  PubMed  Google Scholar 

  • Taylor A (1993a) Aminopeptidases: structure and function. FASEB J 7:290–298

    Article  CAS  PubMed  Google Scholar 

  • Taylor A (1993b) Aminopeptidases: towards a mechanism of action. Trends Biochem Sci 18:167–171

    CAS  PubMed  Google Scholar 

  • Thomas C, Hong T, van Pijkeren J, Hemarajata P, Trinh D, Hu W, Britton R, Kalkum M, Versalovic J (2012) Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS ONE 7:e31951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker H, Kihiko M, Caldwell J, Wright S, Kawarabayashi T, Price D, Walker D, Scheff S, McGillis J, Rydel R, Estus S (2000) The plasmin system is induced by and degrades amyloid-β aggregates. J Neurosci 20:3937–3946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turk B, Bieth J, Bjork I, Dolenc I, Turk D, Cimerman N, Kos J, Colic A, Stoka V, Turk V (1995) Regulation of the activity of lysosomal cysteine proteinases by pH-induced inactivation and/or endogenous protein inhibitors, cystatins. Biol Chem Hoppe Seyler 376:225–230

    Article  CAS  PubMed  Google Scholar 

  • Verde P, Boast S, Franze A, Robbiati F, Blasi F (1988) An upstream enhancer and a negative element in the 5_flanking region of the human urokinase plasminogen activator gene. Nucleic Acids Res 16:10699–10716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wall R, Cryan J, Ross R, Fitzgerald G, Dinan T, Stanton C (2014) Bacterial neuroactive compounds produced by psychobiotics. Adv Exp Med Biol 817:221–239

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Dickson D, Malter J (2006) Beta-Amyloid degradation and Alzheimer's disease. J Biomed Biotechnol 2006:58406

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang Y, Garg S, Mandelkow E, Mandelkow E (2010) Proteolytic processing of tau. Biochem Soc Trans 38:955–961

    Article  CAS  PubMed  Google Scholar 

  • Weller R, Yow H, Preston S, Mazanti I, Nicoll J (2002) Cerebrovascular disease is a major factor in the failure of elimination of Ab from the aging human brain: implications for therapy of Alzheimer’s disease. Ann N Y Acad Sci 977:162–168

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Kluve-Beckerman B, Liepnieks J, Benson M (1995a) In vitro degradation of serum amyloid A by cathepsin D and other acid proteases: possible protection against amyloid fibril formation. Scand J Immunol 41:570–574

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Miyazaki K, Koshikawa N, Takahashi M, Akatsu H, Yamamoto T (1995b) Selective localization of gelatinase A, an enzyme degrading beta-amyloid protein, in white matter microglia and in Schwann cells. Acta Neuropathologica (Berl) 89:199–203

    Article  CAS  Google Scholar 

  • Yan P, Hu X, Song H, Yin K, Bateman R, Cirrito J, Xiao Q, Hsu F, Turk J, Xu J, Hsu C, Holtzman D, Lee J (2006) Matrix metalloproteinase-9 degrades amyloid-β fibrils in vitro and compact plaques in situ. J Biol Chem 281:24566–24574

    Article  CAS  PubMed  Google Scholar 

  • Yao T, Cohen R (1999) Giant proteases: beyond the proteasome. Curr Biol 9:R551–R553

    Article  CAS  PubMed  Google Scholar 

  • Yin K, Cirrito J, Yan P, Hu X, Xiao Q, Pan X, Bateman R, Song H, Hsu F, Turk J (2006) Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J Neurosci 26:10939–10948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo C, Ahn K, Park J, Kim M, Jo S (2010) An aminopeptidase from Streptomyces sp. KK565 degrades beta amyloid monomers, oligomers and fibrils. FEBS Lett 584:4157–4162

    Article  CAS  PubMed  Google Scholar 

  • Yuedea C, Donga H, Csernansky J (2007) Anti-dementia drugs and hippocampal-dependent memory in rodents. Behav Pharmacol 18(5–6):347–363

    Article  CAS  Google Scholar 

  • Zou K, Yamaguchi H, Akatsu H, Sakamoto T, Ko M, Mizoguchi K, Gong J, Yu W, Yamamoto T, Kosaka K (2007) Angiotensin converting enzyme converts amyloid beta-protein1–42 (Aβ1–42) toAβ1–40, and its inhibition enhances brain Abeta deposition. J Neurosci 27:8628–8635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

KDS is thankful to University Grants Commission, New Delhi for providing financial support under UGC SAP DRS Phase-II programme sanctioned to Department of Biochemistry, Shivaji University, Kolhapur. Authors are thankful to Department of Science and Technology, New Delhi for providing fellowship as research assistance under DST-PURSE scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailas D. Sonawane.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanavade, M.J., Sonawane, K.D. Amyloid beta peptide-degrading microbial enzymes and its implication in drug design. 3 Biotech 10, 247 (2020). https://doi.org/10.1007/s13205-020-02240-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02240-2

Keywords

Navigation