Skip to main content

Advertisement

Log in

Improved lipid production in oleaginous brackish diatom Navicula phyllepta MACC8 using two-stage cultivation approach

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

A two-stage cultivation method involving the initial growth in optimized conditions for biomass production followed by those for lipid production in oleaginous brackish diatom Navicula phyllepta MACC8 resulted in a proportional increase of lipid concentration along with biomass production. The diatom was further subjected to stress conditions by altering the nutrient components such as nitrate, phosphate, silicate, and temperature. Silicon deprivation resulted in the highest lipid percentage of 28.78% of weight at the end of the 18th day of the second stage. A significant increase in lipid content was observed on the complete removal of the nutrients silicon and urea one at a time, while the biomass showed a considerable reduction. The application of multiple nutrient stress conditions had a profound influence on the increased rate of lipid production. A combination of phosphate deprivation, silicate limitation and temperature reduction resulted in a significant increase in lipid percentage of 32.13% at the cost of reduced biomass (1.1 g L−1), whereas phosphate deprivation, urea limitation, and temperature reduction resulted in lipid percentage of 27.58% with a biomass of 1.44 g L−1 at the end of the second stage. Further, the results were supported by Nile red staining, FTIR, fatty acid profile and oxidative stress marker analyses. The changes in biochemical composition and oxidative stress parameters within the various stress conditions demonstrated the profound influence of the selected stress factors on the biodiesel productivity of the diatom, besides its stress tolerance. A two-phase culturing system, with multifactor stress application, especially nitrogen limitation along with phosphate starvation and temperature stress, would be the suitable method for gaining maximum biomass productivity and lipid content in diatom Navicula phyllepta MACC8 towards biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams C, Bugbee B (2014) Enhancing lipid production of the marine diatom Chaetoceros gracilis: synergistic interactions of sodium chloride and silicon. J Appl Phycol 26:1351–1357

    CAS  Google Scholar 

  • Aebi H (1974) Catalase. In: Bergmeyer HU (ed) Methods in enzymatic analysis, vol 2. Academic Press, New York, pp 673–678

    Google Scholar 

  • Agirman N, Cetin AK (2017) Effect of nitrogen limitation on growth, total lipid accumulation and protein amount in Scenedesmus acutus as biofuel reactor candidate. Nat Sci Discov 3:33–38

    Google Scholar 

  • Al-Rashed SA, Ibrahim MM, El-Gaaly GA, Al-Shehri S, Mostafa A (2016) Evaluation of radical scavenging system in two microalgae in response to interactive stresses of UV-B radiation and nitrogen starvation. Saudi J Biol Sci 23:706–712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Diaz PD, Ruiz J, Arbib Z, Barragan J, Garrido Perez C, Perales JA (2014) Lipid production of microalga Ankistrodesmus falcatus increased by nutrient and light starvation in a two-stage cultivation process. Appl Biochem Biotechnol 174:1471–1483

    CAS  PubMed  Google Scholar 

  • Arora N, Patel A, Pruthi PA, Pruthi V (2016) Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima for biodiesel production. Bioresour Technol 213:79–87

    CAS  PubMed  Google Scholar 

  • Belotti G, Bravi M, de Caprariis B, de Filippis P, Scarsella M (2013) Effect of nitrogen and phosphorus starvations on Chlorella vulgaris lipids productivity and quality under different trophic regimens for biodiesel production. Am J Plant Sci 4:44–51

    CAS  Google Scholar 

  • Benvenuti G, Bosma R, Cuaresma M (2015) Selecting microalgae with high lipid productivity and photosynthetic activity under nitrogen starvation. J Appl Phycol 27:1425

    CAS  Google Scholar 

  • Bohnenberger JE, Crossetti LO (2014) Influence of temperature and nutrient content on lipid production in freshwater microalgae cultures. An Acad Bras Cienc 86:1239–1248

    CAS  PubMed  Google Scholar 

  • Cakmak T, Angun P, Ozkan AD, Cakmak Z, Olmez TT, Tekinay T (2012) Nitrogen and sulfur deprivation differentiate lipid accumulation targets of Chlamydomonas reinhardtii. Bioengineered 3:343–346

    PubMed  PubMed Central  Google Scholar 

  • Chen B, Wan C, Mehmood MA, Chang JS, Bai F, Zhao X (2017) Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products—a review. Bioresour Technol 244:1198–1206

    CAS  PubMed  Google Scholar 

  • De Castro Araujo S, Garcia VMT (2005) Growth and biochemical composition of the diatom Chaetoceros cf. wighamii Brightwell under different temperature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids. Aquaculture 246:405–412

    Google Scholar 

  • Dhup S, Kannan DC, Dhawan V (2017) Growth, lipid productivity and cellular mechanism of lipid accumulation in microalgae Monoraphidium sp. following different phosphorous concentrations for biofuel production. Curr Sci 112:539

    CAS  Google Scholar 

  • Doan YTT, Obbard JP (2014) Two-stage cultivation of a Nannochloropsis mutant for biodiesel feedstock. J Appl Phycol 27:2203–2208

    Google Scholar 

  • Fabian H, Mäntele W (2002) Infrared spectroscopy of proteins. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy. Wiley, Chichester, pp 3399–3426

    Google Scholar 

  • Fakhry EM, El Maghraby DM (2015) Lipid accumulation in response to nitrogen limitation and variation of temperature in Nannochloropsis salina. Bot Stud 56:6

    PubMed  PubMed Central  Google Scholar 

  • Farooq W, Lee YC, Ryu BG, Kim BH, Kim HS, Choi YE, Yang JW (2013) Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresour Technol 132:230–238

    CAS  PubMed  Google Scholar 

  • Gigova LG, Ivanova NJ (2015) Microalgae respond differently to nitrogen availability during culturing. J Biosci 40:365–374

    CAS  PubMed  Google Scholar 

  • Gobler CJ, Buck NJ, Sieracki ME, Sanudo-Wilhelmy SA (2006) Nitrogen and silicon limitation of phytoplankton communities across an urban estuary: the East River-Long Island Sound system. Estuar Coast Shelf Sci 68:127–138

    CAS  Google Scholar 

  • Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973

    CAS  PubMed  Google Scholar 

  • Gupta GN, Tiwari SK, Lawrence K, Lawrence RS (2011) Effect of silicon on growth and biodiesel production in fresh water diatoms. Plant Arch 11:673–676

    Google Scholar 

  • Guschina IA, Harwood JL (2009) Algal lipids and effect of the environment on their biochemistry. In: Brett M, Arts MT, Michael T (eds) Lipids in aquatic ecosystems. Springer, New York, pp 1–24

    Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    CAS  PubMed  Google Scholar 

  • Jiang Y, Yoshida T, Quigg A (2012) Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae. Plant Physiol Biochem 54:70–77

    CAS  PubMed  Google Scholar 

  • Jiang Y, Laverty KS, Brown J, Brown L, Chagoya J, Burow M, Quigg A (2015) Effect of silicate limitation on growth, cell composition, and lipid production of three native diatoms to Southwest Texas desert. J Appl Phycol 27:1433–1442

    CAS  Google Scholar 

  • Kamalanathan M, Pierangelini M, Shearman LA, Gleadow R, Beardall J (2015) Impacts of nitrogen and phosphorus starvation on the physiology of Chlamydomonas reinhardtii. J Appl Phycol 28:1509–1520

    Google Scholar 

  • Klok AJ, Martens DE, Wijffels RH, Lamers PP (2013) Simultaneous growth and neutral lipid accumulation in microalgae. Bioresour Technol 134:233–243

    CAS  PubMed  Google Scholar 

  • Klok AJ, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2014) Edible oils from microalgae: insights in TAG accumulation. Trends Biotechnol 32:521–528

    CAS  PubMed  Google Scholar 

  • Lauritano C, Orefice I, Procaccini G, Romano G, Ianora A (2015) Key genes as stress indicators in the ubiquitous diatom Skeletonema marinoi. BMC Genom 16:411

    Google Scholar 

  • Lewis T, Nichols PD, Mc Meekin TA (2000) Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. J Microbiol Methods 43:107–116

    CAS  PubMed  Google Scholar 

  • Liang K, Zhang Q, Gu M, Cong W (2013) Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. J Appl Phycol 25:311–318

    CAS  Google Scholar 

  • Lin Q, Zhuo WH, Wang XW, Chen CP, Gao YH, Liang JR (2018) Effects of fundamental nutrient stresses on the lipid accumulation profiles in two diatom species Thalassiosira weissflogii and Chaetoceros muelleri. Bioproc Biosyst Eng 22:1–12

    CAS  Google Scholar 

  • Liu W, Huang Z, Li P, Xia J, Chen B (2012) Formation of triacylglycerol in Nitzschia closterium f. minutissima under nitrogen limitation and possible physiological and biochemical mechanisms. J Exp Mar Biol Ecol 418:24–29

    Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    CAS  PubMed  Google Scholar 

  • Meng Y, Yao C, Xue S, Yang H (2014) Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions. Bioresour Technol 151:347–354

    CAS  PubMed  Google Scholar 

  • Merchant SS, Kropat J, Liu B, Shaw J, Warakanont J (2012) TAG You’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr Opin Biotechnol 23:352–363

    CAS  PubMed  Google Scholar 

  • Murdock JN, Wetzel DL (2009) FTIR microspectroscopy enhances biological and ecological analysis of algae. Appl Spectrosc Rev 44:335–361

    CAS  Google Scholar 

  • Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N (2001) Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J 20:5587–5594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osundeko O, Davies H, Pittman JK (2013) Oxidative stress-tolerant microalgae strains are highly efficient for biofuel feedstock production on wastewater. Biomass Bioenerg 56:284–294

    CAS  Google Scholar 

  • Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90:1429–1441

    CAS  PubMed  Google Scholar 

  • Pancha I, Chokshi K, George B, Ghosh T, Paliwal C, Maurya R, Mishra S (2014) Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol 156:146–154

    CAS  PubMed  Google Scholar 

  • Pistorius AMA, DeGrip WJ, Egorova-Zachernyuk TA (2009) Monitoring of biomass composition from microbiological sources by means of FT-IR spectroscopy. Biotechnol Bioeng 103:123–129

    CAS  PubMed  Google Scholar 

  • Praveenkumar R, Shameera K, Mahalakshmi G, Akbarsha MA, Thajuddin N (2011) Influence of nutrient deprivation on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008: evaluation for biodiesel production. Biomass Bioenerg 37:60–66

    Google Scholar 

  • Ratnapuram HP, Vutukuru SS, Yadavalli R (2018) Mixotrophic transition induced lipid productivity in Chlorella pyrenoidosa under stress conditions for biodiesel production. Heliyon 4:e00496. https://doi.org/10.1016/j.heliyon.2017.e00496

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy KP, Subhani SM, Khan PA, Kumar KB (1995) Effect of light and benzyl adenine on dark-treated growing rice leaves, II changes in peroxidase activity. Plant Cell Physiol 24:987–994

    Google Scholar 

  • Rios LF, Klein BC, Luz LF Jr, Maciel Filho R, Wolf Maciel MR (2015) Nitrogen starvation for lipid accumulation in the microalga species Desmodesmus sp. Appl Biochem Biotechnol 175:469–476

    CAS  PubMed  Google Scholar 

  • Roleda MY, Slocombe SP, Leakey RJ, Day JG, Bell EM, Stanley MS (2013) Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresour Technol 129:439–449

    CAS  PubMed  Google Scholar 

  • Sabu S, Singh ISB, Joseph V (2017a) Optimization of critical media components and culture conditions for enhanced biomass and lipid production in the oleaginous diatom Navicula phyllepta: a statistical approach. Environ Sci Pollut Res 34:26763–26777

    Google Scholar 

  • Sabu S, Singh ISB, Joseph V (2017b) Molecular identification and comparative evaluation of tropical marine microalgae for biodiesel production. Mar Biotechnol 19(4):328–344

    CAS  Google Scholar 

  • Singh P, Guldhe A, Kumari S, Rawat I, Bux F (2015) Investigation of the combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochem Eng J 94:22–29

    CAS  Google Scholar 

  • Soler C, Claquin P, Goutx M, Ragueneau O, Moriceau B (2010) Impact of nutrient starvation on the biochemical composition of the marine diatom Thalassiosira weissflogii: from the whole cell to the frustule fraction. Biogeosci Discuss 7:5953–5995

    Google Scholar 

  • Stehfest K, Toepel J, Wilhelm C (2005) The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiol Biochem 43:717–726

    CAS  PubMed  Google Scholar 

  • Taleb A, Legrand J, Takache H, Taha S, Pruvost J (2018) Investigation of lipid production by nitrogen-starved Parachlorella kessleri under continuous illumination and day/night cycles for biodiesel application. J Appl Phycol 30:761–772

    CAS  Google Scholar 

  • Tan KWM, Lee YK (2016) The dilemma for lipid productivity in green microalgae: importance of substrate provision in improving oil yield without sacrificing growth. Biotechnol Biofuels 9:255

    PubMed  PubMed Central  Google Scholar 

  • Thajuddin N, Ilavarasi A, Baldev E, MubarakAli D, Alharbi NS, Chinnathambi A, Alharbi SA (2015) Stress induced lipids accumulation in Naviculoid marine diatoms for bioenergy application. Int J Biotechnol Wellness Ind 4:18–24

    CAS  Google Scholar 

  • Valenzuela J, Mazurie A, Carlson RP, Gerlach R, Cooksey KE, Peyton BM, Fields MW (2012) Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum. Biotechnol Biofuels 5:1–17

    Google Scholar 

  • Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128:219–240

    CAS  Google Scholar 

  • Yang ZK, Niu YF, Ma YH, Xue J, Zhang MH, Yang WD, Liu JS, Lu SH, Guan Y, Li HY (2013) Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol Biofuels 6:67

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao C, Ai J, Cao X, Xue S, Zhang W (2012) Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation. Bioresour Technol 118:438–444

    CAS  PubMed  Google Scholar 

  • Yilancioglu K, Cokol M, Pastirmaci I, Erman B, Cetiner S (2014) Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. PLoS One 9:e91957

    PubMed  PubMed Central  Google Scholar 

  • Yin-Hu W, Yin Y, Xin L, Hong-Ying H, Zhen-Feng S (2012) Biomass production of a Scenedesmus sp. under phosphorous-starvation cultivation condition. Bioresour Technol 112:193–198

    PubMed  Google Scholar 

  • Zhang ZD, Shrager J, Jain M, Chang CW, Vallon O, Grossman AR (2004) Insights into the survival of Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression. Eukaryot Cell 3:1331–1348

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the University Grants Commission, Government of India for the financial support under the major research grant (File No. F.No.41 568/2012 (SR)). The first author also acknowledges Cochin University of Science and Technology for the Junior and Senior Research Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valsamma Joseph.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabu, S., Singh, I.S.B. & Joseph, V. Improved lipid production in oleaginous brackish diatom Navicula phyllepta MACC8 using two-stage cultivation approach. 3 Biotech 9, 437 (2019). https://doi.org/10.1007/s13205-019-1968-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1968-1

Keywords

Navigation