Skip to main content
Log in

Cyanobacterial diversity in mat sample obtained from hypersaline desert, Rann of Kachchh

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Rann of Kachchh (RoK) is a unique geoformation, which is exposed to dynamic environmental changes such as salinity, temperature, and nutrients throughout the year. In this study, the pooled mat sample was examined for the cyanobacterial community structure using culture-dependent and culture-independent approaches. Taxonomic profiling was studied using amplicon sequencing that revealed the enrichment of Pseudanabaenales and Oscillatoriales by QIIME and MG-RAST, respectively. Other abundant orders were represented by Chroococcales, Nostocales, and unclassified cyanobacteria by both approaches. Nine cyanobacterial cultures were isolated from mat samples showing 90–98% similarities with available sequences in GenBank. The culture-dependent study suggested that mat was dominated by cyanobacterial orders such as Oscillatoriales—filamentous and Chroococcales—unicellular. Our results from the culture-dependent approach also indicated that despite high similarities in gene sequences, six cyanobacteria fall into the separate clade in the phylogenetic analysis that could be signs of evolution due to an extreme environment. Cultured isolates are correlated well with abundant taxa from amplicon sequencing. Further, protein profiling was done specifically for phycobiliproteins which will be helpful to elucidate their roles in light harvesting and energy transfer mechanism in the unique environment of RoK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MG-RAST:

Meta Genome Rapid Annotation using Subsystem Technology

OTU:

Operational taxonomic units

PBP:

Phycobiliproteins

QIIME:

Quantitative insights into microbial ecology

RoK:

Rann of Kachchh

References

  • Abed RM, Klempová T, Gajdoš P, Čertík M (2015) Bacterial diversity and fatty acid composition of hypersaline cyanobacterial mats from an inland desert Wadi. J Arid Environ 115:81–89

    Article  Google Scholar 

  • Andreote APD, Vaz MGMV, Genuário DB, Barbiero L, Rezende-Filho AT, Fiore MF (2014) Nonheterocytous cyanobacteria from Brazilian saline–alkaline lakes. J Phycol 50:675–684

    Article  CAS  Google Scholar 

  • Bahl J et al (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2:163

    Article  Google Scholar 

  • Bennett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58:419–435

    Article  CAS  Google Scholar 

  • Bergman B, Gallon J, Rai A, Stal L (1997) N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol Rev 19:139–185

    Article  CAS  Google Scholar 

  • Bhatnagar A, Makandar M, Garg M, Bhatnagar M (2008) Community structure and diversity of cyanobacteria and green algae in the soils of Thar Desert (India). J Arid Environ 72:73–83

    Article  Google Scholar 

  • Bolhuis H, Cretoiu MS, Stal LJ (2014) Molecular ecology of microbial mats. FEMS Microbiol Ecol 90:335–350

    CAS  PubMed  Google Scholar 

  • Caporaso JG et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  Google Scholar 

  • Chrismas NA, Williamson CJ, Yallop ML, Anesio AM, Sánchez-Baracaldo P (2018) Photoecology of the Antarctic cyanobacterium Leptolyngbya sp. BC1307 brought to light through community analysis, comparative genomics and in vitro photophysiology. Mol Ecol 27:5279–5293

    Article  CAS  Google Scholar 

  • Cowan DA, Sohm JA, Makhalanyane TP, Capone DG, Green T, Cary S, Tuffin I (2011) Hypolithic communities: important nitrogen sources in Antarctic desert soils. Environ Microbiol Rep 3:581–586

    Article  CAS  Google Scholar 

  • Dadheech PK, Abed RM, Mahmoud H, Mohan MK, Krienitz L (2012) Polyphasic characterization of cyanobacteria isolated from desert crusts, and the description of Desertifilum tharense gen. et sp. nov. (Oscillatoriales). Phycologia 51:260–270

    Article  Google Scholar 

  • Desai C, Madamwar D (2007) Extraction of inhibitor-free metagenomic DNA from polluted sediments, compatible with molecular diversity analysis using adsorption and ion-exchange treatments. Bioresour Technol 98:761–768

    Article  CAS  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  Google Scholar 

  • Fagliarone C, Mosca C, Ubaldi I, Verseux C, Baqué M, Wilmotte A, Billi D (2017) Avoidance of protein oxidation correlates with the desiccation and radiation resistance of hot and cold desert strains of the cyanobacterium Chroococcidiopsis. Extremophiles 21:981–991

    Article  CAS  Google Scholar 

  • Falkowski PG (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387:272–275

    Article  CAS  Google Scholar 

  • Fiore MF, Moon DH, Tsai SM, Lee H, Trevors JT (2000) Miniprep DNA isolation from unicellular and filamentous cyanobacteria. J Microbiol Methods 39:159–169

    Article  CAS  Google Scholar 

  • Fund WW (2014) Rann of Kutch seasonal salt marsh

  • Garrity GM, Holt JG (2001) The road map to the manual. Bergey’s Manual® of systematic bacteriology. Springer, Berlin, pp 119–166

    Chapter  Google Scholar 

  • Genuario DB, Andreote APD, Vaz MGMV, Fiore MF (2017) Heterocyte-forming cyanobacteria from Brazilian saline-alkaline lakes. Mol Phylogenetics Evol 109:105–112

    Article  CAS  Google Scholar 

  • Giovannoni S, Turner S, Olsen G, Barns S, Lane D, Pace N (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170:3584–3592

    Article  CAS  Google Scholar 

  • Hoehler TM, Bebout BM, Des Marais DJ (2001) The role of microbial mats in the production of reduced gases on the early Earth. Nature 412:324–327

    Article  CAS  Google Scholar 

  • Hoffmann L, Komárek J, Kaštovský J (2005) System of cyanoprokaryotes (cyanobacteria)—state in 2004. Algol Stud 117:95–115

    Article  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota. 2. Teil. Part: oscillatoriales

  • Kumar D, Adhikary SP (2015) Diversity, molecular phylogeny, and metabolic activity of cyanobacteria in biological soil crusts from Santiniketan (India). J Appl Phycol 27:339–349

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  Google Scholar 

  • Lacap-Bugler DC et al (2017) Global diversity of desert hypolithic cyanobacteria. Front Microbiol 8:867

    Article  Google Scholar 

  • Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    Article  Google Scholar 

  • McDonald D et al (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618

    Article  CAS  Google Scholar 

  • Meyer F et al (2008) The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinf 9:386

    Article  CAS  Google Scholar 

  • Mogany T, Swalaha FM, Allam M, Mtshali PS, Ismail A, Kumari S, Bux F (2018) Phenotypic and genotypic characterisation of an unique indigenous hypersaline unicellular cyanobacterium Euhalothece sp. nov. Microbiol Res 211:47–56

    Article  CAS  Google Scholar 

  • Narayan A et al (2018) Response of microbial community structure to seasonal fluctuation on soils of Rann of Kachchh, Gujarat, India: representing microbial dynamics and functional potential. Ecol Genet Genom 6:22–32

    Google Scholar 

  • Olsson-Francis K, de la Torre R, Cockell CS (2010) Isolation of novel extreme-tolerant cyanobacteria from a rock-dwelling microbial community by using exposure to low Earth orbit. Appl Environ Microbiol 76:2115–2121

    Article  CAS  Google Scholar 

  • Pandit AS et al (2015) A snapshot of microbial communities from the Kutch: one of the largest salt deserts in the World. Extremophiles 19:973–987

    Article  Google Scholar 

  • Patel HM, Rastogi RP, Trivedi U, Madamwar D (2018) Structural characterization and antioxidant potential of phycocyanin from the cyanobacterium Geitlerinema sp. H8DM. Algal Res 32:372–383

    Article  Google Scholar 

  • Pointing SB, Warren-Rhodes KA, Lacap DC, Rhodes KL, McKay CP (2007) Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China’s hot and cold hyperarid deserts. Environ Microbiol 9:414–424

    Article  CAS  Google Scholar 

  • Ramos V et al (2017) Cyanobacterial diversity in microbial mats from the hypersaline lagoon system of Araruama, Brazil: an in-depth polyphasic study. Front Microbiol 8:1233

    Article  Google Scholar 

  • Rastogi R, Sonani R, Madamwar D (2017) UV photoprotectants from algae—synthesis and bio-functionalities. Algal green chemistry. Elsevier, Amsterdam, pp 17–38

    Chapter  Google Scholar 

  • Reddy YP, Yadav RK, Abraham G (2018) Screening of cyanobacterial isolates from Rann of Kutch for the production of mycosporine like amino acids. IJCS 6:1639–1645

    Google Scholar 

  • Rideout JR et al (2014) Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences. PeerJ 2:e545

    Article  Google Scholar 

  • Silva CSP, Genuário DB, Vaz MGMV, Fiore MF (2014) Phylogeny of culturable cyanobacteria from Brazilian mangroves. Syst Appl Microbiol 37:100–112

    Article  CAS  Google Scholar 

  • Singh NK, Sonani RR, Rastogi RP, Madamwar D (2015) The phycobilisomes: an early requisite for efficient photosynthesis in cyanobacteria. EXCLI J 14:268–289

    PubMed  PubMed Central  Google Scholar 

  • Strunecký O et al (2019) High diversity of thermophilic cyanobacteria in Rupite hot spring identified by microscopy, cultivation, single-cell PCR and amplicon sequencing. Extremophiles 23:35–48

    Article  Google Scholar 

  • Tiwari O, Singh B, Mishra U, Singh A, Dhar DW, Singh P (2005) Distribution and physiological characterization of cyanobacteria isolated from arid zones of Rajasthan. Trop Ecol 46:165–171

    CAS  Google Scholar 

  • Tracy CR, Streten-Joyce C, Dalton R, Nussear KE, Gibb KS, Christian KA (2010) Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in northern Australia. Environ Microbiol 12:592–607

    Article  Google Scholar 

  • Tringe SG, Hugenholtz P (2008) A renaissance for the pioneering 16S rRNA gene. Curr Opin Microbiol 11:442–446

    Article  CAS  Google Scholar 

  • Vogt JC, Abed RM, Albach DC, Palinska KA (2018) Bacterial and archaeal diversity in hypersaline cyanobacterial mats along a transect in the intertidal flats of the Sultanate of Oman. Microb Ecol 75:331–347

    Article  CAS  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  Google Scholar 

  • Waterbury JB, Stanier RY (1981) Isolation and growth of cyanobacteria from marine and hypersaline environments. The prokaryotes. Springer, New York, pp 221–223

    Chapter  Google Scholar 

  • Wierzchos J, Ascaso C, McKay CP (2006) Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6:415–422

    Article  Google Scholar 

  • Wilmotte A, Herdman M (2001) Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences. Bergey’s Manual of Systematic Bacteriology Volume One: The Archaea and the Deeply Branching and Phototrophic Bacteria 487–493

  • Yang B, Wang Y, Qian PY (2016) Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinf 17:135

    Article  Google Scholar 

Download references

Acknowledgments

DM acknowledges to University Grants Commission (UGC), New Delhi for providing financial support under UGC-BSR Faculty Fellowship and Department of Biotechnology, New Delhi (BT/PR15686/AAQ/3/811/2016). RPR is grateful to the University Grants Commission (UGC), New Delhi, India for the Dr. D. S. Kothari Postdoctoral Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Datta Madamwar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, H.M., Rastogi, R.P., Trivedi, U. et al. Cyanobacterial diversity in mat sample obtained from hypersaline desert, Rann of Kachchh. 3 Biotech 9, 304 (2019). https://doi.org/10.1007/s13205-019-1837-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1837-y

Keywords

Navigation