Skip to main content
Log in

Surfactant-modified Aspergillus oryzae lipase as a highly active and enantioselective catalyst for the kinetic resolution of (RS)-1-phenylethanol

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The lipase from Aspergillus oryzae was modified with a surfactant and then observed to exhibit high catalytic efficiency and enantioselectivity for the kinetic resolution of (RS)-1-phenylethanol. The influential factors of the modified-lipase preparation were investigated, including the surfactant source, the organic cosolvent, and the buffer pH. The optimum modification conditions were found with a surfactant of polyoxyethylene sorbitan monopalmitate, an organic cosolvent of tetrahydrofuran and a phosphate buffer of pH 7.0. In the transesterification of (RS)-1-phenylethanol with vinyl acetate, the surfactant-modified lipase showed excellent enantioselectivity for the R-isomer (E > 200), giving an enantiomeric excess of higher than 99% for (R)-1-phenylethyl acetate at 46.8% conversion with the reaction time of 2 h at 30 °C. The enzymatic activity had barely altered after 30 days even at 50 °C when it was saved in a powdered state. The results indicated that the modification strategy was useful and highly efficient, and that modified A. oryzae lipase was a promising biocatalyst in the kinetic resolution of (RS)-1-phenylethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Alam P, Rabbani G, Badr G, Badr BM, Khan RH (2015) The surfactant-induced conformational and activity alterations in Rhizopus niveus lipase. Cell Biochem Biophys 71:1199–1206

    Article  CAS  Google Scholar 

  • Basheer S, Nakajima M, Cogan U (1996) Sugar ester-modified lipase for the esterification of fatty acids and long-chain alcohols. J Am Oil Chem Soc 73(11):1475–1479

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Carbonaro M, Nucara A (2010) Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region. Amino Acids 38:679–690

    Article  CAS  Google Scholar 

  • Chen C-S, Fujimoto Y, Girdaukas G, Sih CJ (1982) Quantitative analyses of biochemical kinetic resolutions of enantiomers. J Am Chem Soc 104:7294–7299

    Article  CAS  Google Scholar 

  • Chua LS, Sarmidi MR (2006) Effect of solvent and initial water content on (R,S)-1-phenylethanol resolution. Enzym Microb Tech 38:551–556

    Article  CAS  Google Scholar 

  • Gabriele F, Spreti N, Giacco TD, Germani R, Tiecco M (2018) Effect of surfactant structure on the superactivity of Candida rugosa lipase. Langmuir 34:11510–11517

    Article  CAS  Google Scholar 

  • Goto M, Noda S, Kamiya N, Nakashio F (1996) Enzymatic resolution of racemic ibuprofen by surfactant-coated lipases in organic media. Biotechnol Lett 18(7):839–844

    Article  CAS  Google Scholar 

  • Hama S, Yoshida A, Nakashima K, Noda H, Fukuda H, Kondo A (2010) Surfactant-modified yeast whole-cell biocatalyst displaying lipase on cell surface for enzymatic production of structured lipids in organic media. Appl Microbiol Biotechnol 87:537–543

    Article  CAS  Google Scholar 

  • Holmberg K (2018) Interactions between surfactants and hydrolytic enzymes. Colloids Surf B 168:169–177

    Article  CAS  Google Scholar 

  • Hsieh H-J, Nair GR, Wu W-T (2006) Production of ascorbyl palmitate by surfactant-coated lipase in organic media. J Agric Food Chem 54:5777–5781

    Article  CAS  Google Scholar 

  • Huang SY, Chang HL, Goto M (1998) Preparation of surfactant-coated lipase for the esterification of geraniol and acetic acid in organic solvents. Enzym Microb Tech 22:552–557

    Article  CAS  Google Scholar 

  • Isono Y, Nabetani H, Nakajima M (1995a) Lipase-surfactant complex as catalyst of interesterification and esterification in organic media. J Ferment Bioeng 80(2):170–175

    Article  CAS  Google Scholar 

  • Isono Y, Nabetani H, Nakajima M (1995b) Interesterification of triglyceride and fatty acid in a microaqueous reaction system using lipase-surfactant complex. Biosci Biotechnol Biochem 59:1632–1635

    Article  CAS  Google Scholar 

  • Isono Y, Nabetani H, Nakajima M (1996) Preparation of lipase-surfactant complex for the catalysis of triglyceride hydrolysis in heterogeneous reaction systems. Bioprocess Eng 15:133–137

    Article  CAS  Google Scholar 

  • Kamiya N, Murakami E, Goto M, Nakashio F (1996) Effect of using a co-solvent in the preparation of surfactant-coated lipases on catalytic activity in organic media. J Ferment Bioeng 82(1):37–41

    Article  CAS  Google Scholar 

  • Laane C, Boeren S, Vos K, Veeger C (1987) Rules for optimization of biocatalysis in organic solvents. Biotechnol Bioeng 30:81–87

    Article  CAS  Google Scholar 

  • Li H, Ni Y, Cao X, He X, Li G, Chen K, Ouyang P, Yang J, Tan W (2019) Highly active nanobiocatalysis in deep eutectic solvents via metal-driven enzyme-surfactant nanocomposite. J Biotechnol 292:39–49

    Article  Google Scholar 

  • Mogensen JE, Sehgal P, Otzen DE (2005) Activation, inhibition, and destabilization of Thermomyces lanuginosus lipase by detergents. Biochemistry 44:1719–1730

    Article  CAS  Google Scholar 

  • Mogi K, Nakajima M (1996) Selection of surfactant-modified lipases for interesterification of triglyceride and fatty acid. J Am Oil Chem Soc 73:1505–1512

    Article  CAS  Google Scholar 

  • Mogi K, Nakajima M, Mukataka S (1999) Surfactant modification of lipases for lipid interesterification and hydrolysis reactions. J Am Oil Chem Soc 76:1259–1264

    Article  CAS  Google Scholar 

  • Okahata Y, Ijiro K (1988) A lipid-coated lipase as a new catalyst for triglyceride synthesis in organic solvents. J Chem Soc Chem Commun 20:1392–1394

    Article  Google Scholar 

  • Okahata Y, Ijiro K (1992) Preparation of a lipid-coated lipase and catalysis of glyceride ester syntheses in homogeneous organic solvent. Bull Chem Soc Jpn 65:2411–2420

    Article  CAS  Google Scholar 

  • Okahata Y, Fujimoto Y, Ijiro K (1995) A lipid-coated lipase as an enantioselective ester synthesis catalyst in homogeneous organic solvents. J Org Chem 60:2244–2250

    Article  CAS  Google Scholar 

  • Okazaki S, Kamiya N, Goto M, Nakashio F (1997) Enantioselective esterification of glycidol by surfactant-lipase complexes in organic media. Biotechnol Lett 19(6):541–543

    Article  CAS  Google Scholar 

  • Persson M, Mladenoska I, Wehtje E, Adlercreutz P (2002) Preparation of lipases for use in organic solvents. Enzym Microb Tech 31:833–841

    Article  CAS  Google Scholar 

  • Secundo F, Riva S, Carrea G (1992) Effects of medium and of reaction conditions on the enantioselectivity of lipases in organic solvents and possible rationales. Tetrahedron Asymmetry 3:267–280

    Article  CAS  Google Scholar 

  • Suan C, Sarmidi MR (2004) Immobilised lipase-catalysed resolution of (R,S)-1-phenylethanol in recirculated packed bed reactor. J Mol Catal B Enzym 28:111–119

    Article  Google Scholar 

  • Sugimura Y, Fukunaga K, Matsuno T, Nakao K, Goto M, Nakashio F (1998) A study on the lipid-coating of lipases. Biochem Eng J 2:137–143

    Article  CAS  Google Scholar 

  • Wu JC, Song BD, Xing AH, Hayashi Y, Talukder MMR, Wang SC (2002) Esterification reactions catalyzed by surfactant-coated Candida rugosa lipase in organic solvents. Process Biochem 37:1229–1233

    Article  CAS  Google Scholar 

  • Wu H-Y, Xu J-H, Tsang S-F (2004) Efficient resolution of a chiral alcohol (RS)-HMPC by enzymatic transesterification with vinyl acetate using surfactant-modified lipase. Enzym Microb Technol 34:523–528

    Article  CAS  Google Scholar 

  • Yan HD, Wang Z, Chen LJ (2009) Kinetic resolution of α-lipoic acid via enzymatic differentiation of a remote stereocenter. J Ind Microbiol Biotechnol 36:643–648

    Article  CAS  Google Scholar 

  • Yan HD, Zhang Q, Wang Z (2014) Biocatalytic synthesis of short-chain flavor esters with high substrate loading by a whole-cell lipase from Aspergillus oryzae. Catal Commun 45:59–62

    Article  CAS  Google Scholar 

  • Yan HD, Liu HC, Wang Z (2015) Optimization of the fermentation conditions and substrate specificity of mycelium-bound ester hydrolases of Aspergillus oryzae Cs007. J Serb Chem Soc 80(1):1–8

    Article  Google Scholar 

  • Yan HD, Wang Z, Qian JQ (2017) Efficient kinetic resolution of (RS)-1-phenylethanol by a mycelium-bound lipase from a wild-type Aspergillus oryzae strain. Biotechnol Appl Biochem 64(2):251–259

    Article  CAS  Google Scholar 

  • Yu Y, Fei X, Tian J, Xu LQ, Wang XY, Wang Y (2015) Self-assembled enzyme–inorganic hybrid nanoflowers and their application to enzyme purification. Colloids Surf B 130:299–304

    Article  CAS  Google Scholar 

  • Zhang WW, Yang XL, Jia JQ, Wang N, Hu CL, Yu XQ (2015) Surfactant-activated magnetic cross-linked enzyme aggregates (magnetic CLEAs) of Thermomyces lanuginosus lipase for biodiesel production. J Mol Catal B Enzym 115:83–89

    Article  CAS  Google Scholar 

  • Zheng JY, Wang Z, Zhu Q, Zhang YJ, Yan HD (2009) Resolution of biotin intermediate lactone by enzyme-catalyzed stereoselective lactonization in organic solvent. J Mol Catal B Enzym 56:20–23

    Article  CAS  Google Scholar 

  • Zheng JY, Wu JY, Zhang YJ, Wang Z (2013) Resolution of (R,S)-ethyl-2-(4-hydroxyphenoxy) propanoate using lyophilized mycelium of Aspergillus oryzae WZ007. J Mol Catal B Enzym 97:62–66

    Article  CAS  Google Scholar 

  • Zhong X, Qian JQ, Guo H, Hu YY, Liu M (2014) Biosynthesis of sucrose-6-acetate catalyzed by surfactant-coated Candida rugosa lipase immobilized on sol–gel supports. Bioprocess Biosyst Eng 37:813–818

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program (no. 2016YFD0400803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Qing Qian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H.D., Guo, B.H., Wang, Z. et al. Surfactant-modified Aspergillus oryzae lipase as a highly active and enantioselective catalyst for the kinetic resolution of (RS)-1-phenylethanol. 3 Biotech 9, 265 (2019). https://doi.org/10.1007/s13205-019-1796-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1796-3

Keywords