Knockout of OsPRP1, a gene encoding proline-rich protein, confers enhanced cold sensitivity in rice (Oryza sativa L.) at the seedling stage

Abstract

Proline-rich proteins (PRPs) play multiple physiological and biochemical roles in plant growth and stress response. In this study, we reported that the knockout of OsPRP1 induced cold sensitivity in rice. Mutant plants were generated by CRISPR/Cas9 technology to investigate the role of OsPRP1 in cold stress and 26 mutant plants were obtained in T0 generation with the mutation rate of 85% including 15% bi-allelic, 53.3% homozygous, and 16.7% heterozygous and 16 T-DNA-free lines in T1 generation. The conserved amino acid sequence was changed and the expression level of OsPRP1 was reduced in mutant plants. The OsPRP1 mutant plants displayed more sensitivity to cold stress and showed low survival rate with decreased root biomass than wild-type (WT) and homozygous mutant line with large fragment deletion was more sensitive to low temperature. Mutant lines accumulated less antioxidant enzyme activity and lower levels of proline, chlorophyll, abscisic acid (ABA), and ascorbic acid (AsA) content relative to WT under low-temperature stress. The changes of antioxidant enzymes were examined in the leaves and roots with exogenous salicylic acid (SA) treatment which resulted in increased activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) under cold stress, while enzyme antioxidant activity was lower in untreated seedlings which showed that exogenous SA pretreatment could alleviate the low-temperature stress in rice. Furthermore, the expression of three genes encoding antioxidant enzyme activities (SOD4, POX1, and OsCAT3) was significantly down-regulated in the mutant lines as compared to WT. These results suggested that OsPRP1 enhances cold tolerance by modulating antioxidants and maintaining cross talk through signaling pathways. Therefore, OsPRP1 gene could be exploited for improving cold tolerance in rice and CRISPR/Cas9 technology is helpful to study the function of a gene by analyzing the phenotypes of knockout mutants generated.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Aebi H (1984) Catalase in vitro. In: Methods in enzymology, vol 105. Academic Press, pp 121–126

    Google Scholar 

  2. Akiyama T, Pillai MA (2003) Isolation and characterization of a gene for a repetitive proline rich protein (OsPRP) down-regulated during submergence in rice (Oryza sativa). Physiol Plant 118(4):507–513. https://doi.org/10.1034/j.1399-3054.2003.00104.x

    CAS  Article  Google Scholar 

  3. Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(372):1331–1341. https://doi.org/10.1093/jxb/53.372.1331

    CAS  Article  PubMed  Google Scholar 

  4. Arnon DI (1949) Copper enzyme in isolated chloroplast: polyphenol oxidase in Beta vulgaris. Plant Phyisol 24:1–15. https://doi.org/10.1104/pp.24.1.1

    CAS  Article  Google Scholar 

  5. Aroca R, Tognoni F, Irigoyen JJ, Sánchez-Díaz M, Pardossi A (2001) Different root low temperature response of two maize genotypes differing in chilling sensitivity. Plant Physiol Biochem 39(12):1067–1073. https://doi.org/10.1016/s0981-9428(01)01335-3

    CAS  Article  Google Scholar 

  6. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207. https://doi.org/10.1007/bf00018060

    CAS  Article  Google Scholar 

  7. Beffa R, Martin HV, Pilet P-E (1990) In vitro oxidation of indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots. Plant Physiol 94(2):485–491

    CAS  Article  Google Scholar 

  8. Bonnecarrère V, Borsani O, Díaz P, Capdevielle F, Blanco P, Monza J (2011) Response to photoxidative stress induced by cold in japonica rice is genotype dependent. Plant Sci 180(5):726–732. https://doi.org/10.1016/j.plantsci.2011.01.023

    CAS  Article  PubMed  Google Scholar 

  9. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33(1):41–52. https://doi.org/10.1016/j.biotechadv.2014.12.006

    CAS  Article  PubMed  Google Scholar 

  10. Brisson LF, Tenhaken R, Lamb C (1994) Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6(12):1703–1712. https://doi.org/10.2307/3869902

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35(4):1011–1019. https://doi.org/10.1590/s1415-47572012000600016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Chen L, Wang S, Zhang YH, Li J, Xing ZH, Yang J, Huang T, Cai YD (2017) Identify key sequence features to improve CRISPR sgRNA efficacy. IEEE Access 5:26582–26590. https://doi.org/10.1109/access.2017.2775703

    Article  Google Scholar 

  13. Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci 101(42):15243–15248. https://doi.org/10.1073/pnas.0406069101

    CAS  Article  PubMed  Google Scholar 

  14. Engels C (1994) Effect of root and shoot meristem temperature on shoot to root dry matter partitioning and the internal concentrations of nitrogen and carbohydrates in maize and wheat. Ann Bot 73(2):211–219. https://doi.org/10.1006/anbo.1994.1025

    CAS  Article  Google Scholar 

  15. Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23(10):1229. https://doi.org/10.1038/cr.2013.114

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Forcat S, Bennett MH, Mansfield JW, Grant MR (2008) A rapid and robust method for simultaneously measuring changes in the phytohormones ABA, JA and SA in plants following biotic and abiotic stress. Plant Methods 4(1):16. https://doi.org/10.1186/1746-4811-4-16

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Fowler TJ, Bernhardt C, Tierney ML (1999) Characterization and expression of four proline-rich cell wall protein genes in Arabidopsis encoding two distinct subsets of multiple domain proteins. Plant Physiol 121(4):1081–1091. https://doi.org/10.1104/pp.121.4.1081

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405. https://doi.org/10.1016/j.tibtech.2013.04.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Gupta N, Susa K, Yoda Y, Bonventre JV, Valerius MT, Morizane R (2018) CRISPR/Cas9-based targeted genome editing for the development of monogenic diseases models with human pluripotent stem cells. Curr Protoc Stem Cell Biol 45(1):e50. https://doi.org/10.1002/cpsc.50

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Han Y, Luo D, Usman B, Nawaz G, Zhao N, Liu F, Li R (2018) Development of high yielding glutinous cytoplasmic male sterile rice (Oryza sativa L.) lines through CRISPR/Cas9 based mutagenesis of Wx and TGW6 and proteomic analysis of anther. Agronomy 8:290. https://doi.org/10.3390/agronomy8120290

    Article  Google Scholar 

  21. Hewitt EJ, Dickes GJ (1961) Spectrophotometric measurements on ascorbic acid and their use for the estimation of ascorbic acid and dehydroascorbic acid in plant tissues. Biochem J 78(2):384–391. https://doi.org/10.1042/bj0780384

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6(2):271–282. https://doi.org/10.1046/j.1365-313x.1994.6020271.x

    CAS  Article  PubMed  Google Scholar 

  23. Huang J, Sun SJ, Xu DQ, Yang X, Bao YM, Wang ZF, Tang HJ, Zhang H (2009) Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. Biochem Biophys Res Commun 389(3):556–561. https://doi.org/10.1016/j.bbrc.2009.09.032

    CAS  Article  PubMed  Google Scholar 

  24. Ikeda T, Tanaka W, Mikami M, Endo M, Hirano HY (2015) Generation of artificial drooping leaf mutants by CRISPR-Cas9 technology in rice. Genes Genet Syst 90(4):231–235. https://doi.org/10.1266/ggs.15-00030

    CAS  Article  PubMed  Google Scholar 

  25. Jang G, Lee S, Um TY, Chang SH, Lee HY, Chung PJ, Kim JK, Do Choi Y (2016) Genetic chimerism of CRISPR/Cas9-mediated rice mutants. Plant Biotech Rep 10(6):425–435

    Article  Google Scholar 

  26. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31(3):233–239. https://doi.org/10.1038/nbt.2508

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Jung YJ, Nogoy FM, Lee SK, Cho YG, Kang KK (2018) Application of ZFN for site directed mutagenesis of rice SSIVa gene. Biotechnol Bioprocess Eng 23(1):108–115. https://doi.org/10.1007/s12257-017-0420-9

    CAS  Article  Google Scholar 

  28. Kandpal RP, Rao NA (1985) Alterations in the biosynthesis of proteins and nucleic acids in finger millet (Eleucine coracana) seedlings during water stress and the effect of proline on protein biosynthesis. Plant Sci 40(2):73–79. https://doi.org/10.1016/0168-9452(85)90044-5

    CAS  Article  Google Scholar 

  29. Kanneganti V, Gupta AK (2008) Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol 66(5):445–462. https://doi.org/10.1007/s11103-007-9284-2

    CAS  Article  PubMed  Google Scholar 

  30. Kim SI, Tai TH (2011) Evaluation of seedling cold tolerance in rice cultivars: a comparison of visual ratings and quantitative indicators of physiological changes. Euphytica 178(3):437–447. https://doi.org/10.1007/s10681-010-0343-4

    Article  Google Scholar 

  31. Kim SJ, Lee SC, Hong SK, An K, An G, Kim SR (2009) Ectopic expression of a cold-responsive OsAsr1 cDNA gives enhanced cold tolerance in transgenic rice plants. Mol Cells 27(4):449–458. https://doi.org/10.1007/s10059-009-0055-6

    CAS  Article  PubMed  Google Scholar 

  32. Kim SH, Choi HS, Cho YC, Kim SR (2012) Cold-responsive regulation of a flower-preferential class III peroxidase gene, OsPOX1, in rice (Oryza sativa L.). J Plant Biol 55(2):123–131. https://doi.org/10.1007/s12374-011-9194-3

    CAS  Article  Google Scholar 

  33. Li Q, Zhang D, Chen M, Liang W, Wei J, Qi Y, Yuan Z (2016) Development of japonica photo-sensitive genic male sterile rice lines by editing carbon starved anther using CRISPR/Cas9. J Genet Genomics 43(6):415–419. https://doi.org/10.1016/j.jgg.2016.04.011

    Article  PubMed  Google Scholar 

  34. Liang G, Zhang H, Lou D, Yu D (2016) Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing. Sci Rep 6:21451. https://doi.org/10.1038/srep21451

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Lin A, Wang Y, Tang J, Xue P, Li C, Liu L, Hu B, Yang F, Loake GJ, Chu C (2012) Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol 158(1):451–464. https://doi.org/10.1104/pp.111.184531

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Ma X, Chen L, Zhu Q, Chen Y, Liu YG (2015a) Rapid decoding of sequence-specific nuclease-induced heterozygous and bi-allelic mutations by direct sequencing of PCR products. Mol plant 8(8):1285–1287. https://doi.org/10.1016/j.molp.2015.02.012

    CAS  Article  PubMed  Google Scholar 

  37. Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y (2015b) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol plant 8(8):1274–1284. https://doi.org/10.1016/j.molp.2015.04.007

    CAS  Article  PubMed  Google Scholar 

  38. Miller GA, Suzuki N, Ciftci-Yilmaz SU, Mittler RO (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x

    CAS  Article  PubMed  Google Scholar 

  39. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410. https://doi.org/10.1016/s1360-1385(02)02312-9

    CAS  Article  PubMed  Google Scholar 

  40. Modarresi M, Nematzadeh GA, Moradian F, Alavi SM (2012) Identification and cloning of the Cu/Zn superoxide dismutase gene from halophyte plant Aeluropus littoralis. Genetika 48(1):130–134. https://doi.org/10.1134/s1022795411100127

    CAS  Article  PubMed  Google Scholar 

  41. Nicholas CD, Lindstrom JT, Vodkin LO (1993) Variation of proline rich cell wall proteins in soybean lines with anthocyanin mutations. Plant Mol Biol 21(1):145–156. https://doi.org/10.1007/bf00039625

    CAS  Article  PubMed  Google Scholar 

  42. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49(1):249–279. https://doi.org/10.1146/annurev.arplant.49.1.249

    CAS  Article  Google Scholar 

  43. Osakabe Y, Watanabe T, Sugano SS, Ueta R, Ishihara R, Shinozaki K, Osakabe K (2016) Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci Rep 6:26685. https://doi.org/10.1038/srep26685

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Poire R, Wiese-Klinkenberg A, Parent B, Mielewczik M, Schurr U, Tardieu F, Walter A (2010) Diel time-courses of leaf growth in monocot and dicot species: endogenous rhythms and temperature effects. J Exp Bot 61(6):1751–1759. https://doi.org/10.1093/jxb/erq049

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Qi W, Zhu T, Tian Z, Li C, Zhang W, Song R (2016) High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotechnol 16(1):58. https://doi.org/10.1186/s12896-016-0289-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Quarrie SA, Whitford PN, Appleford NE, Wang TL, Cook SK, Henson IE, Loveys BR (1988) A monoclonal antibody to (S)-abscisic acid: its characterisation and use in a radioimmunoassay for measuring abscisic acid in crude extracts of cereal and lupin leaves. Planta 173(3):330–339. https://doi.org/10.1007/bf00401020

    CAS  Article  PubMed  Google Scholar 

  47. Ren H, Gao Z, Chen L, Wei K, Liu J, Fan Y, Davies WJ, Jia W, Zhang J (2007) Dynamic analysis of ABA accumulation in relation to the rate of ABA catabolism in maize tissues under water deficit. J Exp Bot 58(2):211–219

    CAS  Article  Google Scholar 

  48. Roy S, Banerjee V, Das KP (2015) Understanding the physical and molecular basis of stability of arabidopsis DNA Pol λ under UV-B and high NaCl stress. PLoS One 10(7):e0133843. https://doi.org/10.1371/journal.pone.0133843

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Sakamoto M, Suzuki T (2015) Effect of root-zone temperature on growth and quality of hydroponically grown red leaf lettuce (Lactuca sativa L. cv. Red Wave). Am J Plant Sci 6(14):2350–2360. https://doi.org/10.4236/ajps.2015.614238

    CAS  Article  Google Scholar 

  50. Sato Y, Masuta Y, Saito K, Murayama S, Ozawa K (2011) Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa. Plant Cell Rep 30(3):399–406. https://doi.org/10.1007/s00299-010-0985-7

    CAS  Article  PubMed  Google Scholar 

  51. Shah K, Dubey RS (1997) Effect of cadmium on proline accumulation and ribonuclease activity in rice seedlings: role of proline as a possible enzyme protectant. Biol Plant 40(1):121–130. https://doi.org/10.1023/a:1000956803911

    CAS  Article  Google Scholar 

  52. Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5(1):9. https://doi.org/10.2307/3869424

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Siripornadulsil S, Traina S, Verma DP, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14(11):2837–2847. https://doi.org/10.1105/tpc.004853

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Guo X, Du W, Zhao Y, Xia L (2016) Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol Plant 9(4):628–631. https://doi.org/10.1016/j.molp.2016.01.001

    CAS  Article  PubMed  Google Scholar 

  55. Tierney ML, Wiechert J, Pluymers D (1988) Analysis of the expression of extensin and p33-related cell wall proteins in carrot and soybean. Mol Gen Genet MGG 211(3):393–399. https://doi.org/10.1007/bf00425691

    CAS  Article  Google Scholar 

  56. Venekamp JH (1989) Regulation of cytosol acidity in plants under conditions of drought. Physiol Plant 76(1):112–117. https://doi.org/10.1111/j.1399-3054.1989.tb05461.x

    CAS  Article  Google Scholar 

  57. Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu YG, Zhao K (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11(4):e0154027. https://doi.org/10.1371/journal.pone.0154027

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Wu XH, Mao AJ, Wang R, Wang T, Song Y, Tong Z (2003) Cloning and characterization of OsPRP1 involved in anther development in rice. Chin Sci Bull 48:2458–2465. https://doi.org/10.1360/03wc0299

    CAS  Article  Google Scholar 

  59. Xie G, Kato H, Imai R (2012) Biochemical identification of the OsMKK6–OsMPK3 signalling pathway for chilling stress tolerance in rice. Biochem J 443(1):95–102. https://doi.org/10.1042/bj20111792

    CAS  Article  PubMed  Google Scholar 

  60. Xu X, Kawasaki S, Fujimura T, Wang C (2005) A protocol for high-throughput extraction of DNA from rice leaves. Plant Mol Biol Rep 23(3):291–295. https://doi.org/10.1007/bf02772759

    Article  Google Scholar 

  61. Xu RF, Li H, Qin RY, Li J, Qiu CH, Yang YC, Ma H, Li L, Wei PC, Yang JB (2015) Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci Rep 5:11491. https://doi.org/10.1038/srep11491

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Xu R, Yang Y, Qin R, Li H, Qiu C, Li L, Wei P, Yang J (2016) Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. J Genet Genomics 43(8):529–532. https://doi.org/10.1016/j.jgg.2016.07.003

    Article  PubMed  Google Scholar 

  63. Zhang Q, Chen Q, Wang S, Hong Y, Wang Z (2014) Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci. Rice 7(1):24. https://doi.org/10.1186/s12284-014-0024-3

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zheng X, Yang S, Zhang D, Zhong Z, Tang X, Deng K, Zhou J, Qi Y, Zhang Y (2016) Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism. Plant Cell Rep 35(7):1545–1554. https://doi.org/10.1007/s00299-016-1967-1

    CAS  Article  PubMed  Google Scholar 

  65. Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom JS, Huang S, Liu S, Vera Cruz C, Frommer WB, White FF (2015) Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. The Plant J 82(4):632–643. https://doi.org/10.1111/tpj.12838

    CAS  Article  PubMed  Google Scholar 

  66. Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167(3):527–533

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Liu Yaoguang from South China Agricultural University, who provided us pYCRISPR/Cas9 and gRNA vectors (pYL-U6a-b-gRNAs). We would also like to thank Mr. Mohsin Niaz and Mr. Zhao Neng for the helpful discussion and invaluable comments to make this research meaningful.

Funding

This research was funded by the Key Technology Research and Development Program Guike, Guangxi (Guike AB16380066; Guike AB16380093).

Author information

Affiliations

Authors

Contributions

GN and YH conceived, designed, and performed the experiments. BU was responsible for vector construction and wrote the paper. GN and BU were responsible for final data analysis and wrote the final draft. BQ and FL participated in the experimental design, result analysis, and field trials. RL visualized the project, supervised the methodology, given feedback on data presentation, and reviewed the final draft. All the authors have read the manuscript and approved the submission.

Corresponding author

Correspondence to Rongbai Li.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Accession numbers

Sequence data from this article can be found in the GenBank data library under accession numbers GenBank: KR029105 and KR029107 for the sgRNA intermediate plasmid and GenBank: KR029109 for the CRISPR/Cas9 binary vector.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nawaz, G., Han, Y., Usman, B. et al. Knockout of OsPRP1, a gene encoding proline-rich protein, confers enhanced cold sensitivity in rice (Oryza sativa L.) at the seedling stage. 3 Biotech 9, 254 (2019). https://doi.org/10.1007/s13205-019-1787-4

Download citation

Keywords

  • Cold Stress
  • CRISPR/Cas9
  • Mutation
  • Rice
  • OsPRP1
  • Proline