Skip to main content

Advertisement

Log in

Construction of a species-specific vector for improved plastid transformation efficiency in Capsicum annuum L.

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In the present study, we focused on designing a species-specific chloroplast vector for Capsicum annuum L. and finding out its transformation efficiency compared to a heterologous vector. The plastid transformation vector (CaIA) was designed to target homologous regions trnA and trnI of IR region. A selectable marker gene aadA, whose expression is controlled by psbA promoter and terminator, was cloned between two flanking regions. A heterologous vector pRB95, which targets trnfM and trnG of LSC region along with aadA driven by rrn promoter and psbA terminator, was also used for developing plastid transformation in Capsicum. Cotyledonary explants were bombarded with stabilized biolistic parameters: 900 psi pressure and 9 cm flight distance, and optimized regeneration protocol (0.7 mg/L TDZ + 0.2 mg/L IAA) was used to obtain transplastomic lines on selection medium (300 mg/L spectinomycin). The aadA integration and homoplasmy were confirmed by obtaining 1.2 and 3.7 kb amplicons in CaIA transformants and subsequently verified by Southern blotting, whereas in pRB95 transformants, integration was confirmed by PCR with 1.45 kb and 255 bp amplicons corresponding to aadA integration and flanks, respectively. The transformation efficiencies attained with two plastid vectors were found to be 20%, i.e., 10 transplastomic lines in 50 bombarded plates, with CaIA and 2%, i.e., 1 transplastomic line in 50 bombarded plates, with heterologous pRB95, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Agrawal S, Chandra N, Kothari S (1989) Plant regeneration in tissue cultures of pepper (Capsicum annuum L. cv. Mathania). Plant Cell Tissue Organ Culture 16:47–55

    Article  Google Scholar 

  • Arroyo R, Revilla MA (1991) vitro plant regeneration from cotyledon and hypocotyl segments in two bell pepper cultivars. Plant Cell Rep 10:414–416

    Article  CAS  Google Scholar 

  • Balázs E, Bukovinszki A, Csányi M, Csilléry G, Divéki Z, Nagy I, Mitykó J, Salánki K, Mihálka V (2008) Evaluation of a wide range of pepper genotypes for regeneration and transformation with an Agrobacterium tumefaciens shooter strain. S Afr J Bot 74:720–725

    Article  Google Scholar 

  • Bock R (2014) Genetic engineering of the chloroplast: novel tools and new applications. Curr Opin Biotechnol 26:7–13

    Article  CAS  Google Scholar 

  • Bock R, Maliga P (1995) vivo testing of a tobacco plastid DNA segment for guide RNA function in psbL editing. Mol Gen Genet MGG 247:439–443

    Article  CAS  Google Scholar 

  • Carrer H, Hockenberry TN, Svab Z, Maliga P (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet MGG 241:49–56

    Article  CAS  Google Scholar 

  • Cheng L, Li H-P, Qu B, Huang T, Tu J-X, Fu T-D, Liao Y-C (2010) Chloroplast transformation of rapeseed (Brassica napus) by particle bombardment of cotyledons. Plant Cell Rep 29:371–381

    Article  CAS  Google Scholar 

  • Chiyoda S, Linley PJ, Yamato KT, Fukuzawa H, Yokota A, Kohchi T (2007) Simple and efficient plastid transformation system for the liverwort Marchantia polymorpha L. suspension-culture cells. Transgenic Res 16:41–49

    Article  CAS  Google Scholar 

  • DeGray G, Rajasekaran K, Smith F, Sanford J, Daniell H (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127:852–862

    Article  CAS  Google Scholar 

  • Doyle J (1991) DNA protocols for plants. In:  Molecular techniques in taxonomy, vol 57. NATO ASI Series (Series H: Cell Biology). Springer, Berlin, Heidelberg, pp 283–293

    Chapter  Google Scholar 

  • Dufourmantel N, Pelissier B, Garcon F, Peltier G, Ferullo J-M, Tissot G (2004) Generation of fertile transplastomic soybean. Plant Mol Biol 55:479–489

    Article  CAS  Google Scholar 

  • Ellendula R, Narra M, Kota S, Kalva B, Velivela Y, Savitikadi P, Allini VR (2016) An efficient and high frequency regeneration protocol in two cultivars of Capsicum annuum L. cvs. G3 and G4. Int J Curr Biotechnol 4:1–8

    Google Scholar 

  • Gammoudi N, San Pedro T, Ferchichi A, Gisbert C (2018) Improvement of regeneration in pepper: a recalcitrant species. In Vitro Cell Dev Biol Plant 54:145–153

    Article  CAS  Google Scholar 

  • Gottschamel J, Waheed MT, Clarke JL, Lössl AG (2013) A novel chloroplast transformation vector compatible with the Gateway® recombination cloning technology. Transgenic Res 22:1273–1278

    Article  CAS  Google Scholar 

  • Huang F-C, Klaus S, Herz S, Zou Z, Koop H-U, Golds T (2002) Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Mol Genet Genom 268:19–27

    Article  CAS  Google Scholar 

  • Jo YD, Park J, Kim J, Song W, Hur C-G, Lee Y-H, Kang B-C (2011) Complete sequencing and comparative analyses of the pepper (Capsicum annuum L.) plastome revealed high frequency of tandem repeats and large insertion/deletions on pepper plastome. Plant Cell Rep 30:217–229

    Article  CAS  Google Scholar 

  • Joshi A, Kothari S (2007) High copper levels in the medium improves shoot bud differentiation and elongation from the cultured cotyledons of Capsicum annuum L. Plant Cell Tissue Organ Culture 88:127–133

    Article  CAS  Google Scholar 

  • Kasula K, Prasad S, Umate P, Gadidasu K, Abbagani S (2008) Efficient TDZ and IAA-assisted plant regeneration from cotyledon and leaf explants of Capsicum annuum L.—one-step protocol for shoot bud differentiation and elongation. Int J Plant Dev Biol 2:114–117

    Google Scholar 

  • Kavanagh TA, Thanh ND, Lao NT, McGrath N, Peter SO, Horváth EM, Dix PJ, Medgyesy P (1999) Homeologous plastid DNA transformation in tobacco is mediated by multiple recombination events. Genetics 152:1111–1122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kothari S, Joshi A, Kachhwaha S, Ochoa-Alejo N (2010) Chilli peppers—a review on tissue culture and transgenesis. Biotechnol Adv 28:35–48

    Article  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56:203–216

    Article  CAS  Google Scholar 

  • Kumar RV, Sharma V, Chattopadhyay B, Chakraborty S (2012) An improved plant regeneration and Agrobacterium-mediated transformation of red pepper (Capsicum annuum L.). Physiol Mol Biol Plants 18:357–364

    Article  CAS  Google Scholar 

  • Lee SM, Kang K, Chung H, Yoo SH, Xu XM, Lee S-B, Cheong J-J, Daniell H, Kim M (2006) Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cells 21:401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lelivelt CL, McCabe MS, Newell CA, Bastiaan de Snoo C, Van Dun KM, Birch-Machin I, Gray JC, Mills KH, Nugent JM (2005) Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol Biol 58:763–774

    Article  CAS  Google Scholar 

  • Li D, Zhao K, Xie B, Zhang B, Luo K (2003) Establishment of a highly efficient transformation system for pepper (Capsicum annuum L). Plant Cell Rep 21:785–788. https://doi.org/10.1007/s00299-003-0581-1

    Article  CAS  PubMed  Google Scholar 

  • Li W, Ruf S, Bock R (2011) Chloramphenicol acetyltransferase as selectable marker for plastid transformation. Plant Mol Biol 76:443–451

    Article  CAS  Google Scholar 

  • Liu C-W, Lin C-C, Chen JJ, Tseng M-J (2007) Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Rep 26:1733–1744

    Article  CAS  Google Scholar 

  • López-Ochoa L, Apolinar-Hernández M, Peña-Ramírez Y (2015) Characterization of chloroplast region rrn16-rrn23S from the tropical timber tree Cedrela odorata L. and de novo construction of a transplastomic expression vector suitable for Meliaceae trees and other. Genet Mol Res 14:1469–1478

    Article  Google Scholar 

  • Lutz KA, Azhagiri AK, Tungsuchat-Huang T, Maliga P (2007) A guide to choosing vectors for transformation of the plastid genome of higher plants. Plant Physiol 145:1201–1210

    Article  CAS  Google Scholar 

  • Madanala R, Gupta V, Singh PK, Tuli R (2012) Development of chloroplast transformation vectors, and a new target region in the tobacco plastid genome. Plant Biotechnol Rep 6:77–87

    Article  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  CAS  Google Scholar 

  • Mühlbauer SK, Lössl A, Tzekova L, Zou Z (2002) Functional analysis of plastid DNA replication origins in tobacco by targeted inactivation. Plant J 32:175–184

    Article  Google Scholar 

  • Muralikrishna N, Srinivas K, Kumar KB, Sadanandam A (2016) Stable plastid transformation in Scoparia dulcis L. Physiol Mol Biol Plants 22:575–581

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Mythili J, Rajeev P, Vinay G, Nayeem A (2017) Synergistic effect of silver nitrate and coconut water on shoot differentiation and plant regeneration from cultured cotyledons of Capsicum annuum L. Ind J Exp Biol 55:184–190

    CAS  Google Scholar 

  • Narra M, Kota S, Velivela Y, Ellendula R, Allini VR, Abbagani S (2018) Construction of chloroplast transformation vector and its functional evaluation in Momordica charantia L. 3 Biotech 8:140. https://doi.org/10.1007/s13205-018-1160-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875

    Article  CAS  Google Scholar 

  • Sanatombi K, Sharma G (2008) In vitro plant regeneration in six cultivars of Capsicum spp. using different explants. Biol Plant 52:141–145

    Article  CAS  Google Scholar 

  • Sharma A, Kumar V, Giridhar P, Ravishankar GA (2008) Induction of in vitro flowering in Capsicum frutescens under the influence of silver nitrate and cobalt chloride and pollen transformation. Electron J Biotechnol 11:84–89

    Article  Google Scholar 

  • Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PT, Staub JM, Nehra NS (1999) Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209–216

    Article  CAS  Google Scholar 

  • Skarjinskaia M, Svab Z, Maliga P (2003) Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgenic Res 12:115–122

    Article  CAS  Google Scholar 

  • Srinivas K, Muralikrishna N, Kumar KB, Raghu E, Mahender A, Kiranmayee K, Yashodahara V, Sadanandam A (2016) Biolistic transformation of Scoparia dulcis L. Physiol Mol Biol Plants 22:61–68

    Article  CAS  Google Scholar 

  • Staub JM, Maliga P (1992) Long regions of homologous DNA are incorporated into the tobacco plastid genome by transformation. Plant Cell 4:39–45

    Article  CAS  Google Scholar 

  • Staub JM, Maliga P (1995) Expression of a chimeric uidA gene indicates that polycistronic mRNAs are efficiently translated in tobacco plastids. Plant J 7:845–848

    Article  CAS  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci 87:8526–8530

    Article  CAS  Google Scholar 

  • Tabatabaei I, Ruf S, Bock R (2017) A bifunctional aminoglycoside acetyltransferase/phosphotransferase conferring tobramycin resistance provides an efficient selectable marker for plastid transformation. Plant Mol Biol 93:269–281

    Article  CAS  Google Scholar 

  • Valkov VT, Gargano D, Manna C, Formisano G, Dix PJ, Gray JC, Scotti N, Cardi T (2011) High efficiency plastid transformation in potato and regulation of transgene expression in leaves and tubers by alternative 5′ and 3′ regulatory sequences. Transgenic Res 20:137–151

    Article  CAS  Google Scholar 

  • Venkataiah P, Christopher T, Subhash K (2003) Thidiazuron induced high frequency adventitious shoot formation and plant regeneration in Capsicum annuum L. J Plant Biotechnol Daejeon 5:245–250

    Google Scholar 

  • Venkatesh J, Park SW (2012) Plastid genetic engineering in Solanaceae. Protoplasma 249:981–999

    Article  CAS  Google Scholar 

  • Verma D, Samson NP, Koya V, Daniell H (2008) A protocol for expression of foreign genes in chloroplasts. Nat Protoc 3:739

    Article  CAS  Google Scholar 

  • Wang H-H, Yin W-B, Hu Z-M (2009) Advances in chloroplast engineering. J Genet Genom 36:387–398

    Article  CAS  Google Scholar 

  • Xie W-H, Zhu C-C, Zhang N-S, Li D-W, Yang W-D, Liu J-S, Sathishkumar R, Li H-Y (2014) Construction of novel chloroplast expression vector and development of an efficient transformation system for the diatom Phaeodactylum tricornutum. Mar Biotechnol 16:538–546

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Ralph Bock, Germany for providing pRB95 plastid vector used in this study. We greatly acknowledge the financial assistance provided by the Department of Science and Technology-New Delhi (SR/SO/BB011/2010, SERB). KS is thankful to CAS-TWAS and University Grants Commission-PDFSS (No. F./PDFSS-2014-15-ST-TEL-9011). AS is grateful to UGC for BSR-Faculty Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadanandam Abbagani.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kota, S., Lakkam, R., Kasula, K. et al. Construction of a species-specific vector for improved plastid transformation efficiency in Capsicum annuum L.. 3 Biotech 9, 226 (2019). https://doi.org/10.1007/s13205-019-1747-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1747-z

Keywords