Skip to main content
Log in

Genetic transformation of tropical maize (Zea mays L.) inbred line with a phytase gene from Aspergillus niger

  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

A full-length cDNA of phyA gene of Aspergillus niger, encoding phytase enzyme, was cloned and expressed in E. coli BL21 cells and assayed for its activity. The phyA cDNA consisted of 1404 bp, which encoded 467 amino acid residues. The phytase activity of purified phytase was 826.33 U/mL. The phyA gene under the control of endosperm-specific promoters was transformed into an Indian maize inbred line, UMI29, using particle bombardment-mediated transformation method to generate transgenic maize plants over-expressing phytase in seeds. PCR and GUS analyses demonstrated the presence of transgenes in T0 transgenic plants and their stable inheritance in the T1 progenies. Three transgenic events expressing detectable level of A. niger phytase were characterized by western blot analysis. Phytase activity of 463.158 U/kg of seed was observed in one of the events, JB-UMI29-Z17/2. The phytase activity of transgenic maize seeds was 5.5- to 7-fold higher than the wild-type UMI29 seeds and, consequently, the seeds had 0.6- to 5-fold higher inorganic phosphorus content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

bp:

Base pair

cDNA:

Complementary deoxyribonucleic acid

lpa :

Low phytic acid

P i :

Inorganic phosphorus

phyA :

Phytase A gene

U:

Unit

µM:

Micromolar

UMI:

University maize inbred

References

  • Adedokun SA, Adeola O (2013) Calcium and phosphorus digestibility: metabolic limits. J Appl Poultry Res 22:600–608

    Article  CAS  Google Scholar 

  • Bei JL, Chen Z, Yang L, Liao XZ, Wang Jiang ZY (2001) Over-expression of artificial synthetic gene of Aspergillus niger NRRL3135 phytase in Pichia pastoris. Sheng Wu Gong Cheng Xue Bao 17:254–258

    CAS  PubMed  Google Scholar 

  • Brinch-Pedersen H, Olesen A, Rasmussen SK, Holm PB (2000) Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol Breed 6:195–206

    Article  CAS  Google Scholar 

  • Burnette WN (1981) Western blotting: electrophoretic transfer of proteins from sodium dodecyl sulfate—polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112:195–203

    Article  CAS  Google Scholar 

  • Chen PS, Torribara TY, Warner H (1956) Micro determination of phosphorous. Anal Chem 28:1756–1758

    Article  CAS  Google Scholar 

  • Chen CC, Wu PH, Huang CT, Cheng KJ (2004) A Pichia pastoris fermentation strategy for enhancing the heterologous expression of an Escherichia coli phytase. Enzyme Microbial Technol 35:315–320

    Article  Google Scholar 

  • Chen R, Xue G, Che P, Yao B, Yang W, Ma Q, Fan Y, Zhao Z, Tarczynski MC, Shi J (2008) Transgenic maize plants expressing a fungal phytase gene. Transgenic Res 17:633–643

    Article  CAS  Google Scholar 

  • Chiera JM, Finer JJ, Grabau EA (2004) Ectopic expression of a soybean phytase in developing seeds of Glycine max to improve phosphorus availability. Plant Mol Biol 56:895–904

    Article  CAS  Google Scholar 

  • Choi YM, Suh HJ, Kim JM (2001) Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J Protein Chem 20:287–292

    Article  CAS  Google Scholar 

  • Chu CC, Wang CC, Sun CS, Hsu C, Yin KC, Chu CY, Bi FY (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen source. Sci Sin 18:659–668

    Google Scholar 

  • Cichy KA, Raboy V (2008) Evaluation and development of low phytate crops. In: Krishnan H (ed) Modification of seed composition to promote health and nutrition, agronomy monograph 51. American Society of Agronomy and Crop Science Society of America, San Antonio, pp 177–200

    Google Scholar 

  • Coello P, Maughan JP, Mendoza A, Philip R, Bollinger DW, Veum TL, Vodkin LO, Polacco JC (2001) Generation of low phytic acid Arabidopsis seeds expressing an E. coli phytase during embryo development. Seed Sci Res 11:285–291

    CAS  Google Scholar 

  • Craxton A, Caffrey JJ, Burkhart W, Safrany ST, Shears SB (1997) Molecular cloning and expression of a rat hepatic multiple inositol polyphosphate phosphatase. Biochem J 328:75–81

    Article  CAS  Google Scholar 

  • Denbow DM, Grabau EA, Lacy GH, Kornegay ET, Russell DR, Umbeck PF (1998) Soybeans transformed with a fungal phytase gene improve phosphorus availability for broilers. Poult Sci 77:878–881

    Article  CAS  Google Scholar 

  • Dionisio G, Madsen CK, Holm PB, Welinder KG, Jorgensen M, Stoger E, Arcalis E, Brinch-Pedersen H (2011) Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice. Plant Physiol 156:1087–1100

    Article  CAS  Google Scholar 

  • Drakakaki G, Marcel S, Glahn RP, Lund EK, Pariagh S, Fischer R, Christou P, Stoger E (2005) Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol Biol 59:869–880

    Article  CAS  Google Scholar 

  • Geetha S (2011) Development of nutrient rich maize cultivar meant for poultry feed through transgenic means. Dissertation, Tamil Nadu Agricultural University, Coimbatore, India

  • Greiner R, Konietzny U, Jany KD (1993) Purification and characterization of two phytases from escherichia coli. Arch Biochem Biophys 303:107–113

    Article  CAS  Google Scholar 

  • Han YM, Lei XG (1999) Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Arch Biochem Biophys 364:83–90

    Article  CAS  Google Scholar 

  • Han YM, Wilson DB, Lei XG (1999) Expression of Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae. Appl Environ Microbiol 65:1915–1918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holm PB, Kristiansen KN, Pedersen HB (2002) Transgenic approaches in commonly consumed cereals to improve iron and zinc content and bioavailability. J Nutr 132:514–516

    Article  Google Scholar 

  • Hong CY, Cheng KJ, Tseng TH, Wang CS, Liu LF, Yu SM (2004) Production of two highly active bacterial phytases with broad pH optima in germinated transgenic rice seeds. Transgenic Res 13:29–39

    Article  CAS  Google Scholar 

  • Joshi JB, Yathish KR, Joel AJ, Kumar KK, Kokiladevi E, Arul L, Gnanam R, Balasubramanian P, Sudhakar D (2014) A high-throughput regeneration protocol for recalcitrant tropical Indian maize (Zea mays L) inbreds. Maydica 59:211–216

    Google Scholar 

  • Joshi JB, Geetha S, Singh Birla, Kumar KK, Kokiladevi E, Arul L, Balasubramanian P, Sudhakar D (2015) A maize α-zein promoter drives an endosperm-specific expression of transgene in rice. Physiol Mol Biol Plants 21:35–42

    Article  CAS  Google Scholar 

  • Joshi JB, Nallathambi G, Kumar KK, Kokiladevi E, Arul L, Balasubramanian P, Sudhakar D (2016) An efficient recovery of transgenic plants from a tropical Indian maize inbred line. J Microbiol Biotechnol Food Sci 5:335–340

    Article  CAS  Google Scholar 

  • Karaman S, Cunnick J, Wang K (2012) Expression of the cholera toxin B subunit (CT-B) in maize seeds and a combined mucosal treatment against cholera and traveler’s diarrhoea. Plant Cell Rep 31:527–537

    Article  CAS  Google Scholar 

  • Kostrewa D, Leitch FG, D’Arcy A, Broger C, Mitchell D, Loon APGM (1997) Crystal structure of phytase from Aspergillus ficuum at 2.5 Å resolution. Nat Struct Biol 4:185–190

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet 102:392–397

    Article  CAS  Google Scholar 

  • Maugenest S, Martinez I, Godin B, Perez P, Lescure AM (1999) Structure of two maize phytase genes and their spatio-temporal expression during seedling development. Plant Mol Biol 39:503–514

    Article  CAS  Google Scholar 

  • Mitchell DB, Vogel K, Weimann BJ, Pasamontes L, van Loon AP (1997) The phytase sub-family of histidine acid phosphatases: isolation of two genes for two novel phytases from the fungi Aspergillus terrus and Myceliophthora thermophila. Microbiol-SGM 143:245–252

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Nyannor EKD, Adeola O (2008) Corn expressing an Escherichia coli-derived phytase gene: comparative evaluation study in broiler chicks. Poult Sci 87:2015–2022

    Article  CAS  Google Scholar 

  • O’Dell B, de Boland AR, Koirtyohann SR (1972) Distribution of phytate and nutritionally important elements among the morphological components of cereal grains. J Agric Food Chem 20:718–721

    Article  Google Scholar 

  • Oh BC, Chang BS, Park KH, Ha NC, Kim HK, Oh BH, Oh TK (2001) Calcium-dependent catalytic activity of a novel phytase from Bacillus amyloliquefaciens DS11. Biochemistry 40:9669–9676

    Article  CAS  Google Scholar 

  • Pen J, Verwoerd TC, Vanparidon PA, Beudeker RF, Vandenelzen PJM, Geerse K, Vanderklis JD, Versteegh HAJ, Vanooyen AJJ, Hoekema A (1993) Phytase containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Biotechnology 11:811–814

    CAS  Google Scholar 

  • Phillippy BQ, Mullaney EJ (1997) Expression of an Aspergillus niger phytase (phyA) in E. coli. J Agric Food Chem 45:3337–3342

    Article  CAS  Google Scholar 

  • Ponstein AS, Bade JB, Verwoerd TC, Molendijk L, Storms J, Beudeker RF, Pen J (2002) Stable expression of phytase (phyA) in canola (Brassica napus) seeds towards a commercial product. Mol Breed 10:31–44

    Article  CAS  Google Scholar 

  • Raboy V, Gerbasi PF, Young KA, Stoneberg SD, Pickett SG, Bauman AT, Murthy PPN, Sheridan WF, Ertl DS (2000) Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol 124:355–368

    Article  CAS  Google Scholar 

  • Ragon M, Roux VN, Chemardin P, Moulin G, Boze HH (2008) Molecular gene cloning and overexpression of the phytase from Debaryomyces castellii CBS 2923. Protein Express Purif 58:275–283

    Article  CAS  Google Scholar 

  • Rodriguez E, Mullaney EJ, Lei XG (2000) Expression of Aspergillus fumigates phytase gene in Pichia pastoris and characterization of the recombinant enzyme. Biochem Biophys Res Commun 268:373–378

    Article  CAS  Google Scholar 

  • Salgado KC, Vieira MC, VonPinho E, Guimaraes CT, VonPinho R, Sousa LV (2006) Genetic purity certificate in seeds of hybrid maize using molecular markers. Revista Brasileira de Sementes 28:1

    Article  Google Scholar 

  • Shen Y, Wang H, Pan G (2008) Improving inorganic phosphorous content in maize seeds by introduction of phytase gene. Biotechnology 7:323–327

    Article  CAS  Google Scholar 

  • Simell M, Turunen M, Piironen J, Vaara T (1989) Feed and food applications of phytase. Lecture at 3rd Meet. Industrial Applications of Enzymes, Barcelona, Spain

  • Tamura K, Dudley J, Nei M, Kurmar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  • Ullah AHJ (1988) Production, rapid purification and catalytic characterization of extracellular phytase from Aspergillus ficuum. Prep Biochem 18:443–458

    CAS  PubMed  Google Scholar 

  • Ullah AHJ, Cummins BJ, Dischinger HC Jr (1991) Cyclohexanedione modification of arginine at the active site of Aspergillus ficuum phytase. Biochem Biophys Res Commun 178:45–53

    Article  CAS  Google Scholar 

  • Ullah AHJ, Sethumadhavan K, Mullaney EJ, Ziegelhoffer T, Phillips SA (1999) Characterization of recombinant fungal phytase (phyA) expressed in tobacco leaves. Biochem Biophys Res Comm 264:201–206

    Article  CAS  Google Scholar 

  • Ullah AHJ, Sethumadhavan K, Mullaney EJ, Ziegelhoffer T, Austin-Phillips S (2002) Cloned and expressed fungal phyA gene in alfalfa produces a stable phytase. Biochem Biophys Res Commun 290:1343–1348

    Article  CAS  Google Scholar 

  • Van Dijck PWM (1999) Chymosin and phytase: made by genetic engineering. J Biotechnol 67:77–80

    Article  Google Scholar 

  • Van Etten RL, Davidson R, Stevis PE, MacArthur H, Moore DL (1991) Covalent structure, disulfide bonding, and identification of reactive surface and active site residues of human prostatic acid phosphatase. J Biol Chem 266:2313–2319

    PubMed  Google Scholar 

  • Verwoerd TC, van Paridon PA, van Ooyen AJ, van Lent JW, Hoekema A, Pen J (1995) Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiol 109:1199–1205

    Article  CAS  Google Scholar 

  • Xiong AS, Yao QH, Peng RH, Han PL, Cheng ZM, Li Y (2005) High level expression of a recombinant acid phytase gene in Pichia pastoris. J Appl Microbiol 98:418–428

    Article  CAS  Google Scholar 

  • Zhang ZB, Kornegay ET, Radcliffe JS, Denbow DM, Veit HP, Larsen CT (2000) Comparison of genetically engineered microbial and plant phytases for young broilers. Poult Sci 79:709–717

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Biotechnology, Government of India, New Delhi, for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sudhakar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geetha, S., Joshi, J.B., Kumar, K.K. et al. Genetic transformation of tropical maize (Zea mays L.) inbred line with a phytase gene from Aspergillus niger. 3 Biotech 9, 208 (2019). https://doi.org/10.1007/s13205-019-1731-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1731-7

Keywords

Navigation