Advertisement

3 Biotech

, 9:192 | Cite as

Plant defensins: types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants

  • Raham Sher KhanEmail author
  • Aneela Iqbal
  • Radia Malak
  • Kashmala Shehryar
  • Syeda Attia
  • Talaat Ahmed
  • Mubarak Ali Khan
  • Muhammad Arif
  • Masahiro Mii
Review Article
  • 328 Downloads

Abstract

Natural antimicrobial peptides have been shown as one of the important tools to combat certain pathogens and play important role as a part of innate immune system in plants and, also adaptive immunity in animals. Defensin is one of the antimicrobial peptides with a diverse nature of mechanism against different pathogens like viruses, bacteria and fungi. They have a broad function in humans, vertebrates, invertebrates, insects, and plants. Plant defensins primarily interact with membrane lipids for their biological activity. Several antimicrobial peptides (AMPs) have been overexpressed in plants for enhanced disease protection. The plants defensin peptides have been efficiently employed as an effective strategy for control of diseases in plants. They can be successfully integrated in plants genome along with some other peptide genes in order to produce transgenic crops for enhanced disease resistance. This review summarizes plant defensins, their expression in plants and enhanced disease resistance potential against phytopathogens.

Keywords

Plant defensins Genetic engineering Disease resistance Pathogens 

Notes

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest.

References

  1. Abdallah NA, Shah D, Abbas D, Madkour M (2010) Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt. GM Crops 1:344–350CrossRefGoogle Scholar
  2. Aerts AM, Thevissen K, Bresseleers SM, Sels J, WoutersP Cammue BPA, François IEJA (2007) Arabidopsis thaliana plants expressing human-defensin-2 are more resistant to fungal attack: functional homology between plant and human defensins. Plant Cell Rep 26:1391–1398CrossRefGoogle Scholar
  3. Allen A, Snyder AK, Preuss M, Nielsen EE, Shah DM, Smith TJ (2008) Plant defensins and virally encoded fungal toxin KP4 inhibit plant root growth. Planta 227:331–339CrossRefGoogle Scholar
  4. Bala M, Radhakrishnan A, Kumar A, Mishra GP, Dobraia JR, Kirti PB (2016) Overexpression of a fusion defensin gene from radish and fenugreek improves resistance against leaf spot diseases caused by Cercospora arachidicola and Phaeoisariopsis personata in peanut. Turk J Biol 40:139–149CrossRefGoogle Scholar
  5. Batta G, Barna T, Gaspari Z, Sandor S, Kover KE, Binder U et al (2009) Functional aspects of the solution structure and dynamics of PAF—a highly-stable anti-fungal protein from Penicillium chrysogenum. FEBS J 276:2875–2890CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bloch C JR, Richardson M (1991) A new family of small (5 kD) protein inhibitors of insect alpha-amylases from seeds or sorghum (Sorghum bicolor Moench) have sequence homologies with wheat -purothionins. FEBS Lett 279:101–104CrossRefGoogle Scholar
  7. Broekaert WF, Terras FRG, Cammue BPA, Osborn RW (1995) Plant defensins: novel antimicrobial peptides as components of the host defence system. Plant Physiol 108:1353–1358CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bulet P, Stocklin R (2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 12:3–11CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bulet P, Stöcklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184CrossRefGoogle Scholar
  10. Carvalho AO, Gomes VM (2007) Role of plant lipid transfer proteins in plant cell physiology—a concise review. Peptides 28:1144–1153CrossRefGoogle Scholar
  11. Chen KC, Lin CY, Kuan CC, Sung HY, Chen CS (2002) A novel defensin encoded by a Mungbean cdna exhibits insecticidal activity against bruchid. J Agric Food Chem 50:7258–7263CrossRefGoogle Scholar
  12. Chen JJ, Chen GH, Hsu HC, Li SS, Chen CS (2004) Cloning and Functional Expression of a Mungbean Defensin VrD1 in Pichia pastoris. J Agric Food Chem 52:2256–2261CrossRefGoogle Scholar
  13. Chen SC, Liu AR, Wang FH, Ahammed GJ (2009) Combined overexpression of chitinase and defensin genes in transgenic tomato enhances resistance to Botrytis cinerea. Afr J Biotechnol 8(20):5182–5188Google Scholar
  14. Choi MS, Kim YH, Park HM, Seo BY, Jung JK, Kim ST, Kim MC, Shin DB, Yun HT, Choi IS, Kim CK, Lee JY (2009) Expression of Br D1, a plant defensin from Brassica rapa, confers resistance against brown plant hopper (Nilaparvata lugens) in transgenic rice. Mol Cells 28:131–137CrossRefGoogle Scholar
  15. Dalla Valle L, Benato F, Maistro S, Quinzani S, Alibardi L (2012) Bioinformatic and molecular characterization of beta-defensins-like peptides isolated from the green lizard Anolis carolinensis. Dev Comp Immunol 36:222–229CrossRefGoogle Scholar
  16. Darwish NA, Khan RS, Ntui VO, Nakamura I, Mii M (2014) Generation of selectable marker-free transgenic eggplant resistant to Alternaria solani using the R/RS site-specific recombination system. Plant Cell Rep 33:411–421CrossRefGoogle Scholar
  17. de Paula VS, Razzera G, Barreto-Bergter E, Almeida FCL, Valente AP (2011) Portrayal of complex dynamic properties of sugarcane defensin 5 by NMR: multiple motions associated with membrane interaction. Structure 19:26–36CrossRefGoogle Scholar
  18. Dimarcq JL, Bulet P, Hetru C, Hoffmann J (1998) Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers 47:465–477CrossRefPubMedGoogle Scholar
  19. El-Siddig MA, El-Hussein AA, Saker MM (2011) Agrobacterium-mediated transformation of tomato plants expressing defensin gene. Inter J of Agric Res 6:323–334CrossRefGoogle Scholar
  20. Ericksen B, Wu Z, Lu W, Lehrer RI (2005) Antibacterial activity and specificity of the six human {alpha}-defensins. Antimicrob Agents Chemother 49:269–275CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fant F, Vranken W, Broekaert W, Borremans F (1998) Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein 1 by 1h nmr. J Mol Biol 279:257–270CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fant F, Vranken WF, Borremans FAM (1999) The three-dimensional solution structure of Aesculus hippocastanum antimicrobial protein 1 determined by 1 H nuclear magnetic resonance. Proteins 37:388–403CrossRefPubMedPubMedCentralGoogle Scholar
  23. Francisco GCA, Georgina E (2017) Structural motifs in class I and class II plant defensins for phospholipid interactions:intriguing role of ligand binding and modes of action. Francisco and Georgina, J Plant Physiol Pathol 5:1–7Google Scholar
  24. Fujimura M, Minami Y, Watanabe K, Tadera K (2003) Purification, characterization, and sequencing of a novel type of antimicrobial peptides, Fa-AMP1 and Fa-AMP2, from seeds of buckwheat (Fagopyrum esculentum Moench.). Biosc Biotechnol Biochem 67:1636–1642CrossRefGoogle Scholar
  25. Ganz T (2003) Defensins antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720CrossRefGoogle Scholar
  26. Ganz T (2004) Defensins antimicrobial peptides of vertebrates. C R Biol 327:539–549CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ganz T (2005) Defensins and other antimicrobial peptides: a historical perspective and an update. Comb Chem High Throughput Screen 8:209–217CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF et al (1985) Defensins: natural peptide antibiotics of human neutrophils. J Clin Invest 76:1427–1435CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gao AG, Hakimi SM, Mittanck CA, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CM (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nature biotechnol 18:1307–1310CrossRefGoogle Scholar
  30. Garcia-Olmedo F, Molina A, Alamillo JM, Rodriguez-Palenzuela P (1998) Plant defense peptides. Biopolymers 47:479–491CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gaspar YM, McKenna JA, McGinness BS, Hinch J, Poon S, Connelly AA, Heath RL (2014) Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1. J Experiment Bot 65(6):1541–1550CrossRefGoogle Scholar
  32. Graham MA, Silverstein KAT, Cannon SB, VandenBosch KA (2004) Computational identification and characterization of novel genes from legumes. Plant Physiol 135:1179–1197CrossRefPubMedPubMedCentralGoogle Scholar
  33. Guzmán-Rodríguez JJ, López-Gómez R, Suárez-Rodríguez LM, Salgado-Garciglia R, Rodríguez-Zapata LC, Ochoa-Zarzosa A, López-Meza JE (2013) Antibacterial Activity of Defensin PaDef from Avocado Fruit (Persea americana var. drymifolia) Expressed in Endothelial Cells against Escherichia coli and Staphylococcus aureus. BioMed Research Inter 5:1–9CrossRefGoogle Scholar
  34. Hanks JN, Snyder AK, Graham MA, Shah RK, Blaylock LA, Harrison MJ, Shah DM (2005) Defensin gene family in Medicago truncatula: structure, expression and induction by signal molecules. Plant Mol Biol 58:385–399CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hayes BM, Bleackley MR, Wiltshire JL, Anderson MA, Traven A, van der Weerden NL (2013) Identification and mechanism of action of the plant defensin nad1 as a new member of the antifungal drug arsenal against Candida albicans. Antimicrob Agents Chemother 57:3667–3675CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hoffmann JA, Hetru C (1992) Insect defensins: inducible antibacterial peptides. Immunol Today 13:411–415CrossRefPubMedPubMedCentralGoogle Scholar
  37. Holland JM, Oaten H, Moreby S, Birkett T, Simper J, Southway S, Smith BM (2012) Agri-environment scheme enhancing ecosystem services: a demonstration of improved biological control in cereal crops. Agric Ecosyst Environ 155:147–152CrossRefGoogle Scholar
  38. Huang GJ, Lai HC, Chang YS, Sheu MJ, Lu TL, Huang SS, Lin YH (2008) Antimicrobial, dehydroascorbate reductase, and monodehydroascorbate reductase activities of defensin from sweet potato [ipomoea batatas (l.) lam. ‘Tainong 57'] storage roots. J Agric Food Chem 56:2989–2995CrossRefPubMedPubMedCentralGoogle Scholar
  39. Janssen BJ, Schirra HJ, Lay FT, Anderson MA, Craik DJ (2003) Structure of Petunia hybrid defensin 1, a novel plant defensin with five disulfide bonds. Biochem 42:8214–8222CrossRefGoogle Scholar
  40. Järvå M, Lay FT, Phan TK, Humble C, Poon IKH, Bleackley MR, Anderson MA, Hulett MD, Kvansakul M (2018) X-ray structure of a carpet-like antimicrobial defensin–phospholipid membrane disruption complex. Nat Commun 9:1962CrossRefPubMedPubMedCentralGoogle Scholar
  41. Jha S, Chattoo BB (2010) Expression of a plant defensin in rice confers resistance to fungal phytopathogens. Transgenic Res 19:373–384CrossRefPubMedPubMedCentralGoogle Scholar
  42. Jung YJ, Kang KK (2014) Application of antimicrobial peptides for disease control in plants. Plant Breed Biotech 1:1–13CrossRefGoogle Scholar
  43. Kaewklom S, Wongchai M, Petvises S, Hanpithakphong W, Aunpad R (2018) Structural and biological features of a novel plant defensin from Brugmansia x candida. PLoS One 13(8):201668CrossRefGoogle Scholar
  44. Kanzaki H, Nirasawa S, Saitoh H (2002) Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice. Theor Appl Genet 105:809–814CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kazan K, Rusu A, Marcus JP, Goulter KC, Manners JM (2002) Enhanced quantitative resistance to Laptosphaeria maculans conferred by expression of a novel antimicrobial peptide in canola (Brassica napus L.). Mol Breed 10:63–70CrossRefGoogle Scholar
  46. Khan RS, Nishihara M, Yamamura S, Nakamura I, Mii M (2006) Transgenic Potatoes expressing wasabi defensin peptide confer partial resistance to gray mold (Botrytis cinerea). Plant Biotechnol 23:179–183CrossRefGoogle Scholar
  47. Khan RS, Sjahril R, Nakamura I, Mii M (2008) Production of transgenic potato exhibiting enhanced resistance to fungal infection and herbicide applications. Plant Biotechnol Rep 2:13–20CrossRefGoogle Scholar
  48. Khan RS, Ntui VO, Chin DP, Nakamura I, Mii M (2011) Production of marker-Free disease-resistant potato using isopentenyl transferase gene as a positive selection marker. Plant Cell Rep 30:587–597CrossRefPubMedPubMedCentralGoogle Scholar
  49. Khan RS, Nakamura I, Mii M (2011) Development of disease resistant marker-free tomato by R/RS site-specific recombination. Plant Cell Rep 30:1041–1053CrossRefPubMedPubMedCentralGoogle Scholar
  50. Khan RS, Darwish NA, Khattak B, Ntui V, Kong K, Shimomae K et al (2014) Retransformation of marker-free potato for enhanced resistance against fungal pathogens by pyramiding chitinase and Wasabi Defensin Genes. Mol Biotechnol 56:814–823CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kim C, Kaufmann SH (2006) Defensin a multifunctional molecule lives up to its versatile name. Trends Microbiol 14:428–431CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kong K, Ntui VO, Makabe S, Khan RS, Mii M et al (2014) Transgenic tobacco and tomato plants expressing Wasabi defensin genes driven by root-specific LjNRT2 and AtNRT2. 1 promoters confer resistance against Fusarium oxysporum. Plant Biotechnol 31:89–96CrossRefGoogle Scholar
  53. Lacerda AF, Vasconcelos ÉAR, Pelegrini PB, Grossi de Sa MF (2014) Antifungal defensins and their role in plant defense. Front in Microbiol 5:116CrossRefGoogle Scholar
  54. Lay FT, Anderson M (2005) Defensins-components of the innate immune system in plants. Curr Pro Pep Sci 6:85–101CrossRefGoogle Scholar
  55. Lay FT, Brugliera F, Anderson MA (2003) Isolation and properties of floral defensins from ornamental tobacco and petunia. Plant Physiol 131:1283–1293CrossRefPubMedPubMedCentralGoogle Scholar
  56. Lay FT, Mills GD, Poon IKH, Cowieson NP, Kirby N, Baxter AA et al (2012) Dimerization of plant defensin NaD1 enhances its antifungal activity. J Biol Chem 287:19961–19972CrossRefPubMedPubMedCentralGoogle Scholar
  57. Lay FT, Poon S, McKenna JA, Connelly AA, Barbeta BL, McGinness BS, Fox JL, Daly NL, Craik DJ, Heath RL et al (2014) The C-terminal propeptide of a plant defensin confers cytoprotective and subcellular targeting functions. BMC Plant Biol 14:41CrossRefPubMedPubMedCentralGoogle Scholar
  58. Lehrer RI (2004) Primate defensins. Nat Rev Microbiol 2:727–738CrossRefPubMedPubMedCentralGoogle Scholar
  59. Li Z, Zhou M, Zhang Z, Ren L, Du L, Zhang B, Xu H, Xin Z (2011) Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Funct Integr Genomics 11:63–70CrossRefPubMedPubMedCentralGoogle Scholar
  60. Liu L, Wang L, Jia HP, Zhao C, Heng HHQ, Schutte BC, McCray PB, Ganz T (1998) Structure and mapping of the human β-defensin 2 gene and its expression at sites of inflammation. Gene 222:237–244CrossRefPubMedPubMedCentralGoogle Scholar
  61. Mendez E, Moreno A, Colilla F, Pelaez F, Limas GG, Mendez R, Soriano F, Salinas M, Haro C (1990) Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, γ-hordothionin, from barley endosperm. Euro J Biochem 194:533–539CrossRefGoogle Scholar
  62. Mith O, Benhamdi A, Castillo T, Bergé M, MacDiarmid CW, Steffen J, Eide DJ, Perrier V, Subileau M, Gosti F, Berthomieu P (2015) The antifungal plant defensin AhPDF1.1b is a beneficial factor involved in adaptive response to zinc overload when it is expressed in yeast cells. Microbiol Open 3:409–422CrossRefGoogle Scholar
  63. Nanni V, Schumacher J, Giacomelli L et al (2014) Vv-AMP2, a grapevine flower specific defensin capable of Botrytis cinerea growth inhibition: insights into its mode of action. Plant Pathol 63:899–910CrossRefGoogle Scholar
  64. Ntui VO, Thirukkumaran G, Azadi P, Khan RS, NakamuraI Mii M (2010) Stable integration and expression of wasabi defensin gene in “Egusi” melon (Colocynthis citrullus L.) confers resistance to Fusarium wilt and Alternaria leaf spot. Plant Cell Rep 29:943–954CrossRefPubMedPubMedCentralGoogle Scholar
  65. Ntui VO, Azadi P, Thirukkumaran G, Khan RS, Chin DP, Nakamura I, Mii M (2011) Increased resistance to fusarium wilt in transgenic tobacco lines co-expressing chitinase and wasabi defensin genes. Plant Pathol 60:221–231CrossRefGoogle Scholar
  66. Osborn RW, De Samblanx GW, Thevissen K, Goderis I, Torrekens S, Van Leuven F, Attenborough S, Rees SB, Broekaert WF (1995) Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett 368:257–262CrossRefGoogle Scholar
  67. Parisi K, Shafee TMA, Quimbar P, Van Der Weerden NL, Bleackley MR, Anderson MA (2018) The evolution, function and mechanisms of action for plant defensins. Semin Cell Dev Biol 5:6.  https://doi.org/10.1016/j.semcdb.2018.02.004 CrossRefGoogle Scholar
  68. Park MS, Kim JI, Lee I, Park Bae JY, Park MS (2018) Towards the Application of Human Defensins as Antivirals. Invited Review Biomol Ther 5:1–13Google Scholar
  69. Pelegrini PB, Lay FT, Murad AM, Anderson MA, Franco OL (2008) Novel insights on the mechanism of action of alpha-amylase inhibitors from the plant defensin family. Proteins 73:719–729CrossRefGoogle Scholar
  70. Phoenix DA, Dennison SR, Harris F (2013) Antimicrobial peptides: their history, evolution, and functional promiscuity. Antimicrobial Peptides. Wiley, Weinheim, pp 1–38CrossRefGoogle Scholar
  71. Portieles R, Ayra C, Gonzalez E, Gallo A, Rodriguez R, Chacón O, López Y, Rodriguez M, Castillo J, PujolM Enriquez G, Borroto C, Trujillo L, Thomma BP, Borrás-Hidalgo O (2010) NmDef02, a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high-level pathogen resistance under greenhouse and field conditions. P Biotech J 8:678–690CrossRefGoogle Scholar
  72. Rehaume L, Hancock RE (2008) Neutrophil-derived defensins as modulators of innate immune function. Crit Rev Immunol 28:185–200CrossRefGoogle Scholar
  73. Rodriguez de la Vega RC, Possani LD (2005) On the evolution of invertebrate defensins. Trends Genet 21:330–332CrossRefPubMedPubMedCentralGoogle Scholar
  74. Selitrennikoff CP (2001) Antifungal proteins. Appl Environ Microbiol 67:2883–2894CrossRefPubMedPubMedCentralGoogle Scholar
  75. Selsted ME (2004) Theta-defensins: cyclic antimicrobial peptides produced by binary ligation of truncated alpha-defensins. Curr Protein Pept Sci 5(5):365–367CrossRefGoogle Scholar
  76. Shi J (2007) Defensins and Paneth cells in inflammatory bowel disease. Inflamm Bowel Dis 13:1284–1292CrossRefGoogle Scholar
  77. Silverstein KA, Graham MA, Paape TD, VandenBosch KA (2005) Genome organization of more than 300 defensin-like genes in Arabidopsis. Plant Physiol 138(2):600–610CrossRefPubMedPubMedCentralGoogle Scholar
  78. Sitaram N (2006) Antimicrobial peptides with unusual amino acid compositions and unusual structures. Curr Med Chem 13:679–696CrossRefGoogle Scholar
  79. Sjahril R, Chin DP, Khan RS, Yamamura S, Nakamura I, Amemiya Y, Mii M (2006) Transgenic Phalaenopsis plants with resistance to Erwinia carotovora produced by introducing wasabi defensin gene using Agrobacterium method. Plant Biotech 23:191–194CrossRefGoogle Scholar
  80. Song X, Zhou Z, Wang J, Wu F, Gong W (2004) Purification, characterization and preliminary crystallographic studies of a novel plant defensin from Pachyrrhizu serosus seeds. Acta Crystallogr D Biol Crystallogr 60:1121–1124CrossRefGoogle Scholar
  81. Song X, Zhang M, Zhou Z, Gong W (2011) Ultra-high resolution crystal structure of a dimeric defensin SPE10. FEBS Lett 585:300–306CrossRefGoogle Scholar
  82. Spelbrink RG, Dilmac N, Allen A, Smith TJ, Shah DM, Hockerman GH (2004) Differential Antifungal and Calcium Channel-Blocking Activity among Structurally Related Plant Defensins. Plant Physiol 135(4):2055–2067CrossRefPubMedPubMedCentralGoogle Scholar
  83. Stotz HU, Thomson J, Wang Y (2009) Plant defensins: defense, development and application. Plant Signal Behav 4:1010–1012CrossRefPubMedPubMedCentralGoogle Scholar
  84. Swathi Anuradha T, Divya K, Jami SK, Kirti PB (2008) Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Rep 27:1777CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tam JP, Wang S, Wong KH, Tan WL (2015) Antimicrobial peptides from plants. Pharmaceuticals 8:711–757PubMedGoogle Scholar
  86. Tavares LS, Santos MO, Viccini LF, Moreira JS, Miller RN, Franco OL (2008) Biotechnological potential of antimicrobial peptides from flowers. Peptide 29:1842–1851CrossRefGoogle Scholar
  87. Terras FR, Goderis IJ, Van Leuven F, Vanderleyden J, Cammue BP, Broekaert WF (1992) In vitro antifungal activity of a radish (Raphanus sativus L.) seed protein homologous to nonspecific lipid transfer proteins. Plant Physiol 100:1055–1058CrossRefPubMedPubMedCentralGoogle Scholar
  88. Terras F, Schoofs H, De Bolle M, Van Leuven F, Rees SB, Vanderleyden J, Cammue B, Broekaert WF (1992) Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem 267:15301–15309PubMedGoogle Scholar
  89. Terras FRG, Schoofs HME, Thevissen K, Osborn R, Vanderleyden J, Cammue BPA, Broekaert WF (1993) Synergistic enhancement of the antifungal activity of wheat and barley thionins by radish and oilseed rape 2S albumins and by barley trypsin inhibitors. Plant Physiol 103:1311–1319CrossRefPubMedPubMedCentralGoogle Scholar
  90. Terras FRG, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, den Vanderley J, Cammue BPA, Broekaert WF (1995) Small cysteine-rich antifungal proteins from radish: their role in host defence. Plant Cell 7:573–588CrossRefPubMedPubMedCentralGoogle Scholar
  91. Thevissen K, Ghazi A, De Samblanx GW, Brownlee C, Osborn RW, Broekaert WF (1996) Fungal membrane responses induced by plant defensins and thionins. J Biol Chem 271:15018–15025CrossRefGoogle Scholar
  92. Thevissen K, Osborn RW, Acland DP, Broekaert WF (2000) Specific binding sites for an antifungal plant defensin from dahlia (Dahlia merckii) on fungal cells are required for antifungal activity. Mol Plant Microbe Interact 13:54–61CrossRefGoogle Scholar
  93. Thevissen K, Cammue BP, Lemaire K, Winderickx J, Dickson RC, Lester RL, Ferket KK, Van Even F, Parret AH, Broekaert WF (2000) A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of Saccharomyces cerevisiae to an antifungal plant defensin from dahlia (Dahlia merckii). Proceed Nat Acad Sci 97:9531–9536CrossRefGoogle Scholar
  94. Thevissen K, Warnecke DC, Francois IE, Leipelt M, Heinz E, Ott C, Zahringer U, Thomma BP, Ferket KK, Cammue BP (2004) Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem 279:3900–3905CrossRefGoogle Scholar
  95. Thomma BP, Cammue BP, Thevissen K (2002) Plant defensins. Planta 216:193–202CrossRefPubMedGoogle Scholar
  96. Tiwari S, Mishra DK, Singh A, Singh PK, Tuli R (2008) Expression of a synthetic Cry1EC gene for resistance against Spodoptera litura in transgenic peanut (Arachis hypogaea L.). Plant Cell Rep 27:1017–1025CrossRefPubMedGoogle Scholar
  97. Van der Weerden NL, Lay FT, Anderson MA (2008) The plant defensin, nad1, enters the cytoplasm of Fusarium oxysporum hyphae. J Biol Chem 283:14445–14452CrossRefPubMedGoogle Scholar
  98. Vasavirama K, Kirti PB (2011) Expression, affinity purification, and functional characterization of recombinant fusion gene. World Congress on Biotechnol (21–23 March 2011). J Microbial Biochem Technol S1(013): 35.Google Scholar
  99. Vasavirama K, Kirti PB (2013) Constitutive expression of a fusion gene comprising Trigonella foenum-graecum defensin (Tfgd2) and Raphanus sativus antifungal protein (RsAFP2) confers enhanced disease and insect resistance in transgenic tobacco. Plant Cell Tiss Org Cult 115:309–319CrossRefGoogle Scholar
  100. Velivelli SLS, Islam KT, Hobson E, Shah DM (2018) Modes of Action of a Bi-domain Plant Defensin MtDef5 Against a Bacterial Pathogen Xanthomonas campestris. Front Microbiol 9:934.  https://doi.org/10.3389/fmicb.2018.00934 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Vriens K, Bruno PA, Cammue BP, Thevissen K (2014) Antifungal Plant Defensins: Mechanisms of Action and Production. Molecules 19:12280–12303CrossRefPubMedPubMedCentralGoogle Scholar
  102. Wang Y, Nowak G, Culley D, Hadwiger LA, Fristensky B (1999) Constitutive expression of pea defense gene DRR206 confers resistance to blackleg (Leptosphaeria maculans) disease in transgenic canola (Brassica napus). Mol Plant-Microbe Interact 12:410–418CrossRefGoogle Scholar
  103. Wijaya R, Neumann GM, Condron R, Hughes AB, Polya GM (2000) Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin. Plant Sci 159:243–255CrossRefGoogle Scholar
  104. Wimley WC (2010) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS ChemBiol 10:905–917CrossRefGoogle Scholar
  105. Wong JH, Xia L, Ng T (2007) A review of defensins of diverse origins. Curr Prot Peptide Sci 8:446–459CrossRefGoogle Scholar
  106. Yamano A, Heo NH, Teeter MM (1997) Crystal structure of Ser-22/Ile-25 form crambin confirms solvent, side chain substate correlations. J Biol Chem 272:9597–9600CrossRefGoogle Scholar
  107. Yang D, Biragyn A, Kwak LW, Oppenheim JJ (2002) Mammalian defensins in immunity: more than just microbicidal. Trends Immunol 23:291–296CrossRefPubMedPubMedCentralGoogle Scholar
  108. Zainal Z, Marouf E, Ismail I, Fei CK (2009) Expression ofthe Capsicuum annum (Chili) defensin gene in transgenic tomatoes confers enhanced resistance to fungal pathogens. Am J Physiol 4:70–79Google Scholar
  109. Zhu S (2008) Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of CSαβ defensins. Mol Immunol 45:828–838CrossRefGoogle Scholar
  110. Zhu Q, Bateman A, Singh A, Solomon S (1989) Isolation and biological activity of corticostatic peptides (anti-ACTH). Endocr Res 15:129–149CrossRefGoogle Scholar
  111. Zhu YJ, Agbayani R, Moore PH (2007) Ectopic expressionof Dahlia merckii defensin DmAMP1 improves papaya resistance to Phytophthora palmivora by reducing pathogen vigor. Planta 226:87–97CrossRefGoogle Scholar
  112. Zou J, Mercier C, Koussounadis A, Secombes C (2007) Discovery of multiple beta-defensin like homologues in teleost fish. Mol Immunol 44:638–647CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • Raham Sher Khan
    • 1
    Email author
  • Aneela Iqbal
    • 1
  • Radia Malak
    • 1
  • Kashmala Shehryar
    • 1
  • Syeda Attia
    • 1
  • Talaat Ahmed
    • 2
  • Mubarak Ali Khan
    • 1
  • Muhammad Arif
    • 1
  • Masahiro Mii
    • 3
  1. 1.Department of BiotechnologyAbdul Wali Khan University MardanMardanPakistan
  2. 2.Department of Biological and Environmental Sciences, College of Arts and ScienceQatar UniversityDohaQatar
  3. 3.Center for Environment, Health and Field SciencesChiba University JapanChibaJapan

Personalised recommendations