Abstract
Natural antimicrobial peptides have been shown as one of the important tools to combat certain pathogens and play important role as a part of innate immune system in plants and, also adaptive immunity in animals. Defensin is one of the antimicrobial peptides with a diverse nature of mechanism against different pathogens like viruses, bacteria and fungi. They have a broad function in humans, vertebrates, invertebrates, insects, and plants. Plant defensins primarily interact with membrane lipids for their biological activity. Several antimicrobial peptides (AMPs) have been overexpressed in plants for enhanced disease protection. The plants defensin peptides have been efficiently employed as an effective strategy for control of diseases in plants. They can be successfully integrated in plants genome along with some other peptide genes in order to produce transgenic crops for enhanced disease resistance. This review summarizes plant defensins, their expression in plants and enhanced disease resistance potential against phytopathogens.



References
Abdallah NA, Shah D, Abbas D, Madkour M (2010) Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt. GM Crops 1:344–350
Aerts AM, Thevissen K, Bresseleers SM, Sels J, WoutersP Cammue BPA, François IEJA (2007) Arabidopsis thaliana plants expressing human-defensin-2 are more resistant to fungal attack: functional homology between plant and human defensins. Plant Cell Rep 26:1391–1398
Allen A, Snyder AK, Preuss M, Nielsen EE, Shah DM, Smith TJ (2008) Plant defensins and virally encoded fungal toxin KP4 inhibit plant root growth. Planta 227:331–339
Bala M, Radhakrishnan A, Kumar A, Mishra GP, Dobraia JR, Kirti PB (2016) Overexpression of a fusion defensin gene from radish and fenugreek improves resistance against leaf spot diseases caused by Cercospora arachidicola and Phaeoisariopsis personata in peanut. Turk J Biol 40:139–149
Batta G, Barna T, Gaspari Z, Sandor S, Kover KE, Binder U et al (2009) Functional aspects of the solution structure and dynamics of PAF—a highly-stable anti-fungal protein from Penicillium chrysogenum. FEBS J 276:2875–2890
Bloch C JR, Richardson M (1991) A new family of small (5 kD) protein inhibitors of insect alpha-amylases from seeds or sorghum (Sorghum bicolor Moench) have sequence homologies with wheat -purothionins. FEBS Lett 279:101–104
Broekaert WF, Terras FRG, Cammue BPA, Osborn RW (1995) Plant defensins: novel antimicrobial peptides as components of the host defence system. Plant Physiol 108:1353–1358
Bulet P, Stocklin R (2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 12:3–11
Bulet P, Stöcklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184
Carvalho AO, Gomes VM (2007) Role of plant lipid transfer proteins in plant cell physiology—a concise review. Peptides 28:1144–1153
Chen KC, Lin CY, Kuan CC, Sung HY, Chen CS (2002) A novel defensin encoded by a Mungbean cdna exhibits insecticidal activity against bruchid. J Agric Food Chem 50:7258–7263
Chen JJ, Chen GH, Hsu HC, Li SS, Chen CS (2004) Cloning and Functional Expression of a Mungbean Defensin VrD1 in Pichia pastoris. J Agric Food Chem 52:2256–2261
Chen SC, Liu AR, Wang FH, Ahammed GJ (2009) Combined overexpression of chitinase and defensin genes in transgenic tomato enhances resistance to Botrytis cinerea. Afr J Biotechnol 8(20):5182–5188
Choi MS, Kim YH, Park HM, Seo BY, Jung JK, Kim ST, Kim MC, Shin DB, Yun HT, Choi IS, Kim CK, Lee JY (2009) Expression of Br D1, a plant defensin from Brassica rapa, confers resistance against brown plant hopper (Nilaparvata lugens) in transgenic rice. Mol Cells 28:131–137
Dalla Valle L, Benato F, Maistro S, Quinzani S, Alibardi L (2012) Bioinformatic and molecular characterization of beta-defensins-like peptides isolated from the green lizard Anolis carolinensis. Dev Comp Immunol 36:222–229
Darwish NA, Khan RS, Ntui VO, Nakamura I, Mii M (2014) Generation of selectable marker-free transgenic eggplant resistant to Alternaria solani using the R/RS site-specific recombination system. Plant Cell Rep 33:411–421
de Paula VS, Razzera G, Barreto-Bergter E, Almeida FCL, Valente AP (2011) Portrayal of complex dynamic properties of sugarcane defensin 5 by NMR: multiple motions associated with membrane interaction. Structure 19:26–36
Dimarcq JL, Bulet P, Hetru C, Hoffmann J (1998) Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers 47:465–477
El-Siddig MA, El-Hussein AA, Saker MM (2011) Agrobacterium-mediated transformation of tomato plants expressing defensin gene. Inter J of Agric Res 6:323–334
Ericksen B, Wu Z, Lu W, Lehrer RI (2005) Antibacterial activity and specificity of the six human {alpha}-defensins. Antimicrob Agents Chemother 49:269–275
Fant F, Vranken W, Broekaert W, Borremans F (1998) Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein 1 by 1h nmr. J Mol Biol 279:257–270
Fant F, Vranken WF, Borremans FAM (1999) The three-dimensional solution structure of Aesculus hippocastanum antimicrobial protein 1 determined by 1 H nuclear magnetic resonance. Proteins 37:388–403
Francisco GCA, Georgina E (2017) Structural motifs in class I and class II plant defensins for phospholipid interactions:intriguing role of ligand binding and modes of action. Francisco and Georgina, J Plant Physiol Pathol 5:1–7
Fujimura M, Minami Y, Watanabe K, Tadera K (2003) Purification, characterization, and sequencing of a novel type of antimicrobial peptides, Fa-AMP1 and Fa-AMP2, from seeds of buckwheat (Fagopyrum esculentum Moench.). Biosc Biotechnol Biochem 67:1636–1642
Ganz T (2003) Defensins antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720
Ganz T (2004) Defensins antimicrobial peptides of vertebrates. C R Biol 327:539–549
Ganz T (2005) Defensins and other antimicrobial peptides: a historical perspective and an update. Comb Chem High Throughput Screen 8:209–217
Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF et al (1985) Defensins: natural peptide antibiotics of human neutrophils. J Clin Invest 76:1427–1435
Gao AG, Hakimi SM, Mittanck CA, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CM (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nature biotechnol 18:1307–1310
Garcia-Olmedo F, Molina A, Alamillo JM, Rodriguez-Palenzuela P (1998) Plant defense peptides. Biopolymers 47:479–491
Gaspar YM, McKenna JA, McGinness BS, Hinch J, Poon S, Connelly AA, Heath RL (2014) Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1. J Experiment Bot 65(6):1541–1550
Graham MA, Silverstein KAT, Cannon SB, VandenBosch KA (2004) Computational identification and characterization of novel genes from legumes. Plant Physiol 135:1179–1197
Guzmán-Rodríguez JJ, López-Gómez R, Suárez-Rodríguez LM, Salgado-Garciglia R, Rodríguez-Zapata LC, Ochoa-Zarzosa A, López-Meza JE (2013) Antibacterial Activity of Defensin PaDef from Avocado Fruit (Persea americana var. drymifolia) Expressed in Endothelial Cells against Escherichia coli and Staphylococcus aureus. BioMed Research Inter 5:1–9
Hanks JN, Snyder AK, Graham MA, Shah RK, Blaylock LA, Harrison MJ, Shah DM (2005) Defensin gene family in Medicago truncatula: structure, expression and induction by signal molecules. Plant Mol Biol 58:385–399
Hayes BM, Bleackley MR, Wiltshire JL, Anderson MA, Traven A, van der Weerden NL (2013) Identification and mechanism of action of the plant defensin nad1 as a new member of the antifungal drug arsenal against Candida albicans. Antimicrob Agents Chemother 57:3667–3675
Hoffmann JA, Hetru C (1992) Insect defensins: inducible antibacterial peptides. Immunol Today 13:411–415
Holland JM, Oaten H, Moreby S, Birkett T, Simper J, Southway S, Smith BM (2012) Agri-environment scheme enhancing ecosystem services: a demonstration of improved biological control in cereal crops. Agric Ecosyst Environ 155:147–152
Huang GJ, Lai HC, Chang YS, Sheu MJ, Lu TL, Huang SS, Lin YH (2008) Antimicrobial, dehydroascorbate reductase, and monodehydroascorbate reductase activities of defensin from sweet potato [ipomoea batatas (l.) lam. ‘Tainong 57'] storage roots. J Agric Food Chem 56:2989–2995
Janssen BJ, Schirra HJ, Lay FT, Anderson MA, Craik DJ (2003) Structure of Petunia hybrid defensin 1, a novel plant defensin with five disulfide bonds. Biochem 42:8214–8222
Järvå M, Lay FT, Phan TK, Humble C, Poon IKH, Bleackley MR, Anderson MA, Hulett MD, Kvansakul M (2018) X-ray structure of a carpet-like antimicrobial defensin–phospholipid membrane disruption complex. Nat Commun 9:1962
Jha S, Chattoo BB (2010) Expression of a plant defensin in rice confers resistance to fungal phytopathogens. Transgenic Res 19:373–384
Jung YJ, Kang KK (2014) Application of antimicrobial peptides for disease control in plants. Plant Breed Biotech 1:1–13
Kaewklom S, Wongchai M, Petvises S, Hanpithakphong W, Aunpad R (2018) Structural and biological features of a novel plant defensin from Brugmansia x candida. PLoS One 13(8):201668
Kanzaki H, Nirasawa S, Saitoh H (2002) Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice. Theor Appl Genet 105:809–814
Kazan K, Rusu A, Marcus JP, Goulter KC, Manners JM (2002) Enhanced quantitative resistance to Laptosphaeria maculans conferred by expression of a novel antimicrobial peptide in canola (Brassica napus L.). Mol Breed 10:63–70
Khan RS, Nishihara M, Yamamura S, Nakamura I, Mii M (2006) Transgenic Potatoes expressing wasabi defensin peptide confer partial resistance to gray mold (Botrytis cinerea). Plant Biotechnol 23:179–183
Khan RS, Sjahril R, Nakamura I, Mii M (2008) Production of transgenic potato exhibiting enhanced resistance to fungal infection and herbicide applications. Plant Biotechnol Rep 2:13–20
Khan RS, Ntui VO, Chin DP, Nakamura I, Mii M (2011) Production of marker-Free disease-resistant potato using isopentenyl transferase gene as a positive selection marker. Plant Cell Rep 30:587–597
Khan RS, Nakamura I, Mii M (2011) Development of disease resistant marker-free tomato by R/RS site-specific recombination. Plant Cell Rep 30:1041–1053
Khan RS, Darwish NA, Khattak B, Ntui V, Kong K, Shimomae K et al (2014) Retransformation of marker-free potato for enhanced resistance against fungal pathogens by pyramiding chitinase and Wasabi Defensin Genes. Mol Biotechnol 56:814–823
Kim C, Kaufmann SH (2006) Defensin a multifunctional molecule lives up to its versatile name. Trends Microbiol 14:428–431
Kong K, Ntui VO, Makabe S, Khan RS, Mii M et al (2014) Transgenic tobacco and tomato plants expressing Wasabi defensin genes driven by root-specific LjNRT2 and AtNRT2. 1 promoters confer resistance against Fusarium oxysporum. Plant Biotechnol 31:89–96
Lacerda AF, Vasconcelos ÉAR, Pelegrini PB, Grossi de Sa MF (2014) Antifungal defensins and their role in plant defense. Front in Microbiol 5:116
Lay FT, Anderson M (2005) Defensins-components of the innate immune system in plants. Curr Pro Pep Sci 6:85–101
Lay FT, Brugliera F, Anderson MA (2003) Isolation and properties of floral defensins from ornamental tobacco and petunia. Plant Physiol 131:1283–1293
Lay FT, Mills GD, Poon IKH, Cowieson NP, Kirby N, Baxter AA et al (2012) Dimerization of plant defensin NaD1 enhances its antifungal activity. J Biol Chem 287:19961–19972
Lay FT, Poon S, McKenna JA, Connelly AA, Barbeta BL, McGinness BS, Fox JL, Daly NL, Craik DJ, Heath RL et al (2014) The C-terminal propeptide of a plant defensin confers cytoprotective and subcellular targeting functions. BMC Plant Biol 14:41
Lehrer RI (2004) Primate defensins. Nat Rev Microbiol 2:727–738
Li Z, Zhou M, Zhang Z, Ren L, Du L, Zhang B, Xu H, Xin Z (2011) Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Funct Integr Genomics 11:63–70
Liu L, Wang L, Jia HP, Zhao C, Heng HHQ, Schutte BC, McCray PB, Ganz T (1998) Structure and mapping of the human β-defensin 2 gene and its expression at sites of inflammation. Gene 222:237–244
Mendez E, Moreno A, Colilla F, Pelaez F, Limas GG, Mendez R, Soriano F, Salinas M, Haro C (1990) Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, γ-hordothionin, from barley endosperm. Euro J Biochem 194:533–539
Mith O, Benhamdi A, Castillo T, Bergé M, MacDiarmid CW, Steffen J, Eide DJ, Perrier V, Subileau M, Gosti F, Berthomieu P (2015) The antifungal plant defensin AhPDF1.1b is a beneficial factor involved in adaptive response to zinc overload when it is expressed in yeast cells. Microbiol Open 3:409–422
Nanni V, Schumacher J, Giacomelli L et al (2014) Vv-AMP2, a grapevine flower specific defensin capable of Botrytis cinerea growth inhibition: insights into its mode of action. Plant Pathol 63:899–910
Ntui VO, Thirukkumaran G, Azadi P, Khan RS, NakamuraI Mii M (2010) Stable integration and expression of wasabi defensin gene in “Egusi” melon (Colocynthis citrullus L.) confers resistance to Fusarium wilt and Alternaria leaf spot. Plant Cell Rep 29:943–954
Ntui VO, Azadi P, Thirukkumaran G, Khan RS, Chin DP, Nakamura I, Mii M (2011) Increased resistance to fusarium wilt in transgenic tobacco lines co-expressing chitinase and wasabi defensin genes. Plant Pathol 60:221–231
Osborn RW, De Samblanx GW, Thevissen K, Goderis I, Torrekens S, Van Leuven F, Attenborough S, Rees SB, Broekaert WF (1995) Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett 368:257–262
Parisi K, Shafee TMA, Quimbar P, Van Der Weerden NL, Bleackley MR, Anderson MA (2018) The evolution, function and mechanisms of action for plant defensins. Semin Cell Dev Biol 5:6. https://doi.org/10.1016/j.semcdb.2018.02.004
Park MS, Kim JI, Lee I, Park Bae JY, Park MS (2018) Towards the Application of Human Defensins as Antivirals. Invited Review Biomol Ther 5:1–13
Pelegrini PB, Lay FT, Murad AM, Anderson MA, Franco OL (2008) Novel insights on the mechanism of action of alpha-amylase inhibitors from the plant defensin family. Proteins 73:719–729
Phoenix DA, Dennison SR, Harris F (2013) Antimicrobial peptides: their history, evolution, and functional promiscuity. Antimicrobial Peptides. Wiley, Weinheim, pp 1–38
Portieles R, Ayra C, Gonzalez E, Gallo A, Rodriguez R, Chacón O, López Y, Rodriguez M, Castillo J, PujolM Enriquez G, Borroto C, Trujillo L, Thomma BP, Borrás-Hidalgo O (2010) NmDef02, a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high-level pathogen resistance under greenhouse and field conditions. P Biotech J 8:678–690
Rehaume L, Hancock RE (2008) Neutrophil-derived defensins as modulators of innate immune function. Crit Rev Immunol 28:185–200
Rodriguez de la Vega RC, Possani LD (2005) On the evolution of invertebrate defensins. Trends Genet 21:330–332
Selitrennikoff CP (2001) Antifungal proteins. Appl Environ Microbiol 67:2883–2894
Selsted ME (2004) Theta-defensins: cyclic antimicrobial peptides produced by binary ligation of truncated alpha-defensins. Curr Protein Pept Sci 5(5):365–367
Shi J (2007) Defensins and Paneth cells in inflammatory bowel disease. Inflamm Bowel Dis 13:1284–1292
Silverstein KA, Graham MA, Paape TD, VandenBosch KA (2005) Genome organization of more than 300 defensin-like genes in Arabidopsis. Plant Physiol 138(2):600–610
Sitaram N (2006) Antimicrobial peptides with unusual amino acid compositions and unusual structures. Curr Med Chem 13:679–696
Sjahril R, Chin DP, Khan RS, Yamamura S, Nakamura I, Amemiya Y, Mii M (2006) Transgenic Phalaenopsis plants with resistance to Erwinia carotovora produced by introducing wasabi defensin gene using Agrobacterium method. Plant Biotech 23:191–194
Song X, Zhou Z, Wang J, Wu F, Gong W (2004) Purification, characterization and preliminary crystallographic studies of a novel plant defensin from Pachyrrhizu serosus seeds. Acta Crystallogr D Biol Crystallogr 60:1121–1124
Song X, Zhang M, Zhou Z, Gong W (2011) Ultra-high resolution crystal structure of a dimeric defensin SPE10. FEBS Lett 585:300–306
Spelbrink RG, Dilmac N, Allen A, Smith TJ, Shah DM, Hockerman GH (2004) Differential Antifungal and Calcium Channel-Blocking Activity among Structurally Related Plant Defensins. Plant Physiol 135(4):2055–2067
Stotz HU, Thomson J, Wang Y (2009) Plant defensins: defense, development and application. Plant Signal Behav 4:1010–1012
Swathi Anuradha T, Divya K, Jami SK, Kirti PB (2008) Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Rep 27:1777
Tam JP, Wang S, Wong KH, Tan WL (2015) Antimicrobial peptides from plants. Pharmaceuticals 8:711–757
Tavares LS, Santos MO, Viccini LF, Moreira JS, Miller RN, Franco OL (2008) Biotechnological potential of antimicrobial peptides from flowers. Peptide 29:1842–1851
Terras FR, Goderis IJ, Van Leuven F, Vanderleyden J, Cammue BP, Broekaert WF (1992) In vitro antifungal activity of a radish (Raphanus sativus L.) seed protein homologous to nonspecific lipid transfer proteins. Plant Physiol 100:1055–1058
Terras F, Schoofs H, De Bolle M, Van Leuven F, Rees SB, Vanderleyden J, Cammue B, Broekaert WF (1992) Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem 267:15301–15309
Terras FRG, Schoofs HME, Thevissen K, Osborn R, Vanderleyden J, Cammue BPA, Broekaert WF (1993) Synergistic enhancement of the antifungal activity of wheat and barley thionins by radish and oilseed rape 2S albumins and by barley trypsin inhibitors. Plant Physiol 103:1311–1319
Terras FRG, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, den Vanderley J, Cammue BPA, Broekaert WF (1995) Small cysteine-rich antifungal proteins from radish: their role in host defence. Plant Cell 7:573–588
Thevissen K, Ghazi A, De Samblanx GW, Brownlee C, Osborn RW, Broekaert WF (1996) Fungal membrane responses induced by plant defensins and thionins. J Biol Chem 271:15018–15025
Thevissen K, Osborn RW, Acland DP, Broekaert WF (2000) Specific binding sites for an antifungal plant defensin from dahlia (Dahlia merckii) on fungal cells are required for antifungal activity. Mol Plant Microbe Interact 13:54–61
Thevissen K, Cammue BP, Lemaire K, Winderickx J, Dickson RC, Lester RL, Ferket KK, Van Even F, Parret AH, Broekaert WF (2000) A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of Saccharomyces cerevisiae to an antifungal plant defensin from dahlia (Dahlia merckii). Proceed Nat Acad Sci 97:9531–9536
Thevissen K, Warnecke DC, Francois IE, Leipelt M, Heinz E, Ott C, Zahringer U, Thomma BP, Ferket KK, Cammue BP (2004) Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem 279:3900–3905
Thomma BP, Cammue BP, Thevissen K (2002) Plant defensins. Planta 216:193–202
Tiwari S, Mishra DK, Singh A, Singh PK, Tuli R (2008) Expression of a synthetic Cry1EC gene for resistance against Spodoptera litura in transgenic peanut (Arachis hypogaea L.). Plant Cell Rep 27:1017–1025
Van der Weerden NL, Lay FT, Anderson MA (2008) The plant defensin, nad1, enters the cytoplasm of Fusarium oxysporum hyphae. J Biol Chem 283:14445–14452
Vasavirama K, Kirti PB (2011) Expression, affinity purification, and functional characterization of recombinant fusion gene. World Congress on Biotechnol (21–23 March 2011). J Microbial Biochem Technol S1(013): 35.
Vasavirama K, Kirti PB (2013) Constitutive expression of a fusion gene comprising Trigonella foenum-graecum defensin (Tfgd2) and Raphanus sativus antifungal protein (RsAFP2) confers enhanced disease and insect resistance in transgenic tobacco. Plant Cell Tiss Org Cult 115:309–319
Velivelli SLS, Islam KT, Hobson E, Shah DM (2018) Modes of Action of a Bi-domain Plant Defensin MtDef5 Against a Bacterial Pathogen Xanthomonas campestris. Front Microbiol 9:934. https://doi.org/10.3389/fmicb.2018.00934
Vriens K, Bruno PA, Cammue BP, Thevissen K (2014) Antifungal Plant Defensins: Mechanisms of Action and Production. Molecules 19:12280–12303
Wang Y, Nowak G, Culley D, Hadwiger LA, Fristensky B (1999) Constitutive expression of pea defense gene DRR206 confers resistance to blackleg (Leptosphaeria maculans) disease in transgenic canola (Brassica napus). Mol Plant-Microbe Interact 12:410–418
Wijaya R, Neumann GM, Condron R, Hughes AB, Polya GM (2000) Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin. Plant Sci 159:243–255
Wimley WC (2010) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS ChemBiol 10:905–917
Wong JH, Xia L, Ng T (2007) A review of defensins of diverse origins. Curr Prot Peptide Sci 8:446–459
Yamano A, Heo NH, Teeter MM (1997) Crystal structure of Ser-22/Ile-25 form crambin confirms solvent, side chain substate correlations. J Biol Chem 272:9597–9600
Yang D, Biragyn A, Kwak LW, Oppenheim JJ (2002) Mammalian defensins in immunity: more than just microbicidal. Trends Immunol 23:291–296
Zainal Z, Marouf E, Ismail I, Fei CK (2009) Expression ofthe Capsicuum annum (Chili) defensin gene in transgenic tomatoes confers enhanced resistance to fungal pathogens. Am J Physiol 4:70–79
Zhu S (2008) Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of CSαβ defensins. Mol Immunol 45:828–838
Zhu Q, Bateman A, Singh A, Solomon S (1989) Isolation and biological activity of corticostatic peptides (anti-ACTH). Endocr Res 15:129–149
Zhu YJ, Agbayani R, Moore PH (2007) Ectopic expressionof Dahlia merckii defensin DmAMP1 improves papaya resistance to Phytophthora palmivora by reducing pathogen vigor. Planta 226:87–97
Zou J, Mercier C, Koussounadis A, Secombes C (2007) Discovery of multiple beta-defensin like homologues in teleost fish. Mol Immunol 44:638–647
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflict of interest.
Rights and permissions
About this article
Cite this article
Sher Khan, R., Iqbal, A., Malak, R. et al. Plant defensins: types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants. 3 Biotech 9, 192 (2019). https://doi.org/10.1007/s13205-019-1725-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s13205-019-1725-5