Skip to main content
Log in

Plant defensins: types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants

3 Biotech Aims and scope Submit manuscript

Abstract

Natural antimicrobial peptides have been shown as one of the important tools to combat certain pathogens and play important role as a part of innate immune system in plants and, also adaptive immunity in animals. Defensin is one of the antimicrobial peptides with a diverse nature of mechanism against different pathogens like viruses, bacteria and fungi. They have a broad function in humans, vertebrates, invertebrates, insects, and plants. Plant defensins primarily interact with membrane lipids for their biological activity. Several antimicrobial peptides (AMPs) have been overexpressed in plants for enhanced disease protection. The plants defensin peptides have been efficiently employed as an effective strategy for control of diseases in plants. They can be successfully integrated in plants genome along with some other peptide genes in order to produce transgenic crops for enhanced disease resistance. This review summarizes plant defensins, their expression in plants and enhanced disease resistance potential against phytopathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Abdallah NA, Shah D, Abbas D, Madkour M (2010) Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt. GM Crops 1:344–350

    Article  PubMed  Google Scholar 

  • Aerts AM, Thevissen K, Bresseleers SM, Sels J, WoutersP Cammue BPA, François IEJA (2007) Arabidopsis thaliana plants expressing human-defensin-2 are more resistant to fungal attack: functional homology between plant and human defensins. Plant Cell Rep 26:1391–1398

    Article  CAS  PubMed  Google Scholar 

  • Allen A, Snyder AK, Preuss M, Nielsen EE, Shah DM, Smith TJ (2008) Plant defensins and virally encoded fungal toxin KP4 inhibit plant root growth. Planta 227:331–339

    Article  CAS  PubMed  Google Scholar 

  • Bala M, Radhakrishnan A, Kumar A, Mishra GP, Dobraia JR, Kirti PB (2016) Overexpression of a fusion defensin gene from radish and fenugreek improves resistance against leaf spot diseases caused by Cercospora arachidicola and Phaeoisariopsis personata in peanut. Turk J Biol 40:139–149

    Article  CAS  Google Scholar 

  • Batta G, Barna T, Gaspari Z, Sandor S, Kover KE, Binder U et al (2009) Functional aspects of the solution structure and dynamics of PAF—a highly-stable anti-fungal protein from Penicillium chrysogenum. FEBS J 276:2875–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloch C JR, Richardson M (1991) A new family of small (5 kD) protein inhibitors of insect alpha-amylases from seeds or sorghum (Sorghum bicolor Moench) have sequence homologies with wheat -purothionins. FEBS Lett 279:101–104

    Article  CAS  PubMed  Google Scholar 

  • Broekaert WF, Terras FRG, Cammue BPA, Osborn RW (1995) Plant defensins: novel antimicrobial peptides as components of the host defence system. Plant Physiol 108:1353–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulet P, Stocklin R (2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 12:3–11

    Article  CAS  PubMed  Google Scholar 

  • Bulet P, Stöcklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184

    Article  CAS  PubMed  Google Scholar 

  • Carvalho AO, Gomes VM (2007) Role of plant lipid transfer proteins in plant cell physiology—a concise review. Peptides 28:1144–1153

    Article  CAS  Google Scholar 

  • Chen KC, Lin CY, Kuan CC, Sung HY, Chen CS (2002) A novel defensin encoded by a Mungbean cdna exhibits insecticidal activity against bruchid. J Agric Food Chem 50:7258–7263

    Article  CAS  PubMed  Google Scholar 

  • Chen JJ, Chen GH, Hsu HC, Li SS, Chen CS (2004) Cloning and Functional Expression of a Mungbean Defensin VrD1 in Pichia pastoris. J Agric Food Chem 52:2256–2261

    Article  CAS  PubMed  Google Scholar 

  • Chen SC, Liu AR, Wang FH, Ahammed GJ (2009) Combined overexpression of chitinase and defensin genes in transgenic tomato enhances resistance to Botrytis cinerea. Afr J Biotechnol 8(20):5182–5188

    CAS  Google Scholar 

  • Choi MS, Kim YH, Park HM, Seo BY, Jung JK, Kim ST, Kim MC, Shin DB, Yun HT, Choi IS, Kim CK, Lee JY (2009) Expression of Br D1, a plant defensin from Brassica rapa, confers resistance against brown plant hopper (Nilaparvata lugens) in transgenic rice. Mol Cells 28:131–137

    Article  CAS  PubMed  Google Scholar 

  • Dalla Valle L, Benato F, Maistro S, Quinzani S, Alibardi L (2012) Bioinformatic and molecular characterization of beta-defensins-like peptides isolated from the green lizard Anolis carolinensis. Dev Comp Immunol 36:222–229

    Article  CAS  PubMed  Google Scholar 

  • Darwish NA, Khan RS, Ntui VO, Nakamura I, Mii M (2014) Generation of selectable marker-free transgenic eggplant resistant to Alternaria solani using the R/RS site-specific recombination system. Plant Cell Rep 33:411–421

    Article  CAS  PubMed  Google Scholar 

  • de Paula VS, Razzera G, Barreto-Bergter E, Almeida FCL, Valente AP (2011) Portrayal of complex dynamic properties of sugarcane defensin 5 by NMR: multiple motions associated with membrane interaction. Structure 19:26–36

    Article  CAS  PubMed  Google Scholar 

  • Dimarcq JL, Bulet P, Hetru C, Hoffmann J (1998) Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers 47:465–477

    Article  CAS  PubMed  Google Scholar 

  • El-Siddig MA, El-Hussein AA, Saker MM (2011) Agrobacterium-mediated transformation of tomato plants expressing defensin gene. Inter J of Agric Res 6:323–334

    Article  CAS  Google Scholar 

  • Ericksen B, Wu Z, Lu W, Lehrer RI (2005) Antibacterial activity and specificity of the six human {alpha}-defensins. Antimicrob Agents Chemother 49:269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fant F, Vranken W, Broekaert W, Borremans F (1998) Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein 1 by 1h nmr. J Mol Biol 279:257–270

    Article  CAS  PubMed  Google Scholar 

  • Fant F, Vranken WF, Borremans FAM (1999) The three-dimensional solution structure of Aesculus hippocastanum antimicrobial protein 1 determined by 1 H nuclear magnetic resonance. Proteins 37:388–403

    Article  CAS  PubMed  Google Scholar 

  • Francisco GCA, Georgina E (2017) Structural motifs in class I and class II plant defensins for phospholipid interactions:intriguing role of ligand binding and modes of action. Francisco and Georgina, J Plant Physiol Pathol 5:1–7

    Google Scholar 

  • Fujimura M, Minami Y, Watanabe K, Tadera K (2003) Purification, characterization, and sequencing of a novel type of antimicrobial peptides, Fa-AMP1 and Fa-AMP2, from seeds of buckwheat (Fagopyrum esculentum Moench.). Biosc Biotechnol Biochem 67:1636–1642

    Article  CAS  Google Scholar 

  • Ganz T (2003) Defensins antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

    Article  CAS  PubMed  Google Scholar 

  • Ganz T (2004) Defensins antimicrobial peptides of vertebrates. C R Biol 327:539–549

    Article  CAS  PubMed  Google Scholar 

  • Ganz T (2005) Defensins and other antimicrobial peptides: a historical perspective and an update. Comb Chem High Throughput Screen 8:209–217

    Article  CAS  PubMed  Google Scholar 

  • Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF et al (1985) Defensins: natural peptide antibiotics of human neutrophils. J Clin Invest 76:1427–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao AG, Hakimi SM, Mittanck CA, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CM (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nature biotechnol 18:1307–1310

    Article  CAS  Google Scholar 

  • Garcia-Olmedo F, Molina A, Alamillo JM, Rodriguez-Palenzuela P (1998) Plant defense peptides. Biopolymers 47:479–491

    Article  CAS  PubMed  Google Scholar 

  • Gaspar YM, McKenna JA, McGinness BS, Hinch J, Poon S, Connelly AA, Heath RL (2014) Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1. J Experiment Bot 65(6):1541–1550

    Article  CAS  Google Scholar 

  • Graham MA, Silverstein KAT, Cannon SB, VandenBosch KA (2004) Computational identification and characterization of novel genes from legumes. Plant Physiol 135:1179–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzmán-Rodríguez JJ, López-Gómez R, Suárez-Rodríguez LM, Salgado-Garciglia R, Rodríguez-Zapata LC, Ochoa-Zarzosa A, López-Meza JE (2013) Antibacterial Activity of Defensin PaDef from Avocado Fruit (Persea americana var. drymifolia) Expressed in Endothelial Cells against Escherichia coli and Staphylococcus aureus. BioMed Research Inter 5:1–9

    Article  CAS  Google Scholar 

  • Hanks JN, Snyder AK, Graham MA, Shah RK, Blaylock LA, Harrison MJ, Shah DM (2005) Defensin gene family in Medicago truncatula: structure, expression and induction by signal molecules. Plant Mol Biol 58:385–399

    Article  CAS  PubMed  Google Scholar 

  • Hayes BM, Bleackley MR, Wiltshire JL, Anderson MA, Traven A, van der Weerden NL (2013) Identification and mechanism of action of the plant defensin nad1 as a new member of the antifungal drug arsenal against Candida albicans. Antimicrob Agents Chemother 57:3667–3675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann JA, Hetru C (1992) Insect defensins: inducible antibacterial peptides. Immunol Today 13:411–415

    Article  CAS  PubMed  Google Scholar 

  • Holland JM, Oaten H, Moreby S, Birkett T, Simper J, Southway S, Smith BM (2012) Agri-environment scheme enhancing ecosystem services: a demonstration of improved biological control in cereal crops. Agric Ecosyst Environ 155:147–152

    Article  Google Scholar 

  • Huang GJ, Lai HC, Chang YS, Sheu MJ, Lu TL, Huang SS, Lin YH (2008) Antimicrobial, dehydroascorbate reductase, and monodehydroascorbate reductase activities of defensin from sweet potato [ipomoea batatas (l.) lam. ‘Tainong 57'] storage roots. J Agric Food Chem 56:2989–2995

    Article  CAS  PubMed  Google Scholar 

  • Janssen BJ, Schirra HJ, Lay FT, Anderson MA, Craik DJ (2003) Structure of Petunia hybrid defensin 1, a novel plant defensin with five disulfide bonds. Biochem 42:8214–8222

    Article  CAS  Google Scholar 

  • Järvå M, Lay FT, Phan TK, Humble C, Poon IKH, Bleackley MR, Anderson MA, Hulett MD, Kvansakul M (2018) X-ray structure of a carpet-like antimicrobial defensin–phospholipid membrane disruption complex. Nat Commun 9:1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha S, Chattoo BB (2010) Expression of a plant defensin in rice confers resistance to fungal phytopathogens. Transgenic Res 19:373–384

    Article  CAS  PubMed  Google Scholar 

  • Jung YJ, Kang KK (2014) Application of antimicrobial peptides for disease control in plants. Plant Breed Biotech 1:1–13

    Article  Google Scholar 

  • Kaewklom S, Wongchai M, Petvises S, Hanpithakphong W, Aunpad R (2018) Structural and biological features of a novel plant defensin from Brugmansia x candida. PLoS One 13(8):201668

    Article  CAS  Google Scholar 

  • Kanzaki H, Nirasawa S, Saitoh H (2002) Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice. Theor Appl Genet 105:809–814

    Article  CAS  PubMed  Google Scholar 

  • Kazan K, Rusu A, Marcus JP, Goulter KC, Manners JM (2002) Enhanced quantitative resistance to Laptosphaeria maculans conferred by expression of a novel antimicrobial peptide in canola (Brassica napus L.). Mol Breed 10:63–70

    Article  CAS  Google Scholar 

  • Khan RS, Nishihara M, Yamamura S, Nakamura I, Mii M (2006) Transgenic Potatoes expressing wasabi defensin peptide confer partial resistance to gray mold (Botrytis cinerea). Plant Biotechnol 23:179–183

    Article  Google Scholar 

  • Khan RS, Sjahril R, Nakamura I, Mii M (2008) Production of transgenic potato exhibiting enhanced resistance to fungal infection and herbicide applications. Plant Biotechnol Rep 2:13–20

    Article  Google Scholar 

  • Khan RS, Ntui VO, Chin DP, Nakamura I, Mii M (2011) Production of marker-Free disease-resistant potato using isopentenyl transferase gene as a positive selection marker. Plant Cell Rep 30:587–597

    Article  CAS  PubMed  Google Scholar 

  • Khan RS, Nakamura I, Mii M (2011) Development of disease resistant marker-free tomato by R/RS site-specific recombination. Plant Cell Rep 30:1041–1053

    Article  CAS  PubMed  Google Scholar 

  • Khan RS, Darwish NA, Khattak B, Ntui V, Kong K, Shimomae K et al (2014) Retransformation of marker-free potato for enhanced resistance against fungal pathogens by pyramiding chitinase and Wasabi Defensin Genes. Mol Biotechnol 56:814–823

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Kaufmann SH (2006) Defensin a multifunctional molecule lives up to its versatile name. Trends Microbiol 14:428–431

    Article  CAS  PubMed  Google Scholar 

  • Kong K, Ntui VO, Makabe S, Khan RS, Mii M et al (2014) Transgenic tobacco and tomato plants expressing Wasabi defensin genes driven by root-specific LjNRT2 and AtNRT2. 1 promoters confer resistance against Fusarium oxysporum. Plant Biotechnol 31:89–96

    Article  CAS  Google Scholar 

  • Lacerda AF, Vasconcelos ÉAR, Pelegrini PB, Grossi de Sa MF (2014) Antifungal defensins and their role in plant defense. Front in Microbiol 5:116

    Article  Google Scholar 

  • Lay FT, Anderson M (2005) Defensins-components of the innate immune system in plants. Curr Pro Pep Sci 6:85–101

    Article  CAS  Google Scholar 

  • Lay FT, Brugliera F, Anderson MA (2003) Isolation and properties of floral defensins from ornamental tobacco and petunia. Plant Physiol 131:1283–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lay FT, Mills GD, Poon IKH, Cowieson NP, Kirby N, Baxter AA et al (2012) Dimerization of plant defensin NaD1 enhances its antifungal activity. J Biol Chem 287:19961–19972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lay FT, Poon S, McKenna JA, Connelly AA, Barbeta BL, McGinness BS, Fox JL, Daly NL, Craik DJ, Heath RL et al (2014) The C-terminal propeptide of a plant defensin confers cytoprotective and subcellular targeting functions. BMC Plant Biol 14:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehrer RI (2004) Primate defensins. Nat Rev Microbiol 2:727–738

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhou M, Zhang Z, Ren L, Du L, Zhang B, Xu H, Xin Z (2011) Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Funct Integr Genomics 11:63–70

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wang L, Jia HP, Zhao C, Heng HHQ, Schutte BC, McCray PB, Ganz T (1998) Structure and mapping of the human β-defensin 2 gene and its expression at sites of inflammation. Gene 222:237–244

    Article  CAS  PubMed  Google Scholar 

  • Mendez E, Moreno A, Colilla F, Pelaez F, Limas GG, Mendez R, Soriano F, Salinas M, Haro C (1990) Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, γ-hordothionin, from barley endosperm. Euro J Biochem 194:533–539

    Article  CAS  Google Scholar 

  • Mith O, Benhamdi A, Castillo T, Bergé M, MacDiarmid CW, Steffen J, Eide DJ, Perrier V, Subileau M, Gosti F, Berthomieu P (2015) The antifungal plant defensin AhPDF1.1b is a beneficial factor involved in adaptive response to zinc overload when it is expressed in yeast cells. Microbiol Open 3:409–422

    Article  CAS  Google Scholar 

  • Nanni V, Schumacher J, Giacomelli L et al (2014) Vv-AMP2, a grapevine flower specific defensin capable of Botrytis cinerea growth inhibition: insights into its mode of action. Plant Pathol 63:899–910

    Article  CAS  Google Scholar 

  • Ntui VO, Thirukkumaran G, Azadi P, Khan RS, NakamuraI Mii M (2010) Stable integration and expression of wasabi defensin gene in “Egusi” melon (Colocynthis citrullus L.) confers resistance to Fusarium wilt and Alternaria leaf spot. Plant Cell Rep 29:943–954

    Article  CAS  PubMed  Google Scholar 

  • Ntui VO, Azadi P, Thirukkumaran G, Khan RS, Chin DP, Nakamura I, Mii M (2011) Increased resistance to fusarium wilt in transgenic tobacco lines co-expressing chitinase and wasabi defensin genes. Plant Pathol 60:221–231

    Article  CAS  Google Scholar 

  • Osborn RW, De Samblanx GW, Thevissen K, Goderis I, Torrekens S, Van Leuven F, Attenborough S, Rees SB, Broekaert WF (1995) Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett 368:257–262

    Article  CAS  PubMed  Google Scholar 

  • Parisi K, Shafee TMA, Quimbar P, Van Der Weerden NL, Bleackley MR, Anderson MA (2018) The evolution, function and mechanisms of action for plant defensins. Semin Cell Dev Biol 5:6. https://doi.org/10.1016/j.semcdb.2018.02.004

    Article  CAS  Google Scholar 

  • Park MS, Kim JI, Lee I, Park Bae JY, Park MS (2018) Towards the Application of Human Defensins as Antivirals. Invited Review Biomol Ther 5:1–13

    Google Scholar 

  • Pelegrini PB, Lay FT, Murad AM, Anderson MA, Franco OL (2008) Novel insights on the mechanism of action of alpha-amylase inhibitors from the plant defensin family. Proteins 73:719–729

    Article  CAS  PubMed  Google Scholar 

  • Phoenix DA, Dennison SR, Harris F (2013) Antimicrobial peptides: their history, evolution, and functional promiscuity. Antimicrobial Peptides. Wiley, Weinheim, pp 1–38

    Chapter  Google Scholar 

  • Portieles R, Ayra C, Gonzalez E, Gallo A, Rodriguez R, Chacón O, López Y, Rodriguez M, Castillo J, PujolM Enriquez G, Borroto C, Trujillo L, Thomma BP, Borrás-Hidalgo O (2010) NmDef02, a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high-level pathogen resistance under greenhouse and field conditions. P Biotech J 8:678–690

    Article  CAS  Google Scholar 

  • Rehaume L, Hancock RE (2008) Neutrophil-derived defensins as modulators of innate immune function. Crit Rev Immunol 28:185–200

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez de la Vega RC, Possani LD (2005) On the evolution of invertebrate defensins. Trends Genet 21:330–332

    Article  CAS  PubMed  Google Scholar 

  • Selitrennikoff CP (2001) Antifungal proteins. Appl Environ Microbiol 67:2883–2894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selsted ME (2004) Theta-defensins: cyclic antimicrobial peptides produced by binary ligation of truncated alpha-defensins. Curr Protein Pept Sci 5(5):365–367

    Article  CAS  PubMed  Google Scholar 

  • Shi J (2007) Defensins and Paneth cells in inflammatory bowel disease. Inflamm Bowel Dis 13:1284–1292

    Article  PubMed  Google Scholar 

  • Silverstein KA, Graham MA, Paape TD, VandenBosch KA (2005) Genome organization of more than 300 defensin-like genes in Arabidopsis. Plant Physiol 138(2):600–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sitaram N (2006) Antimicrobial peptides with unusual amino acid compositions and unusual structures. Curr Med Chem 13:679–696

    Article  CAS  PubMed  Google Scholar 

  • Sjahril R, Chin DP, Khan RS, Yamamura S, Nakamura I, Amemiya Y, Mii M (2006) Transgenic Phalaenopsis plants with resistance to Erwinia carotovora produced by introducing wasabi defensin gene using Agrobacterium method. Plant Biotech 23:191–194

    Article  CAS  Google Scholar 

  • Song X, Zhou Z, Wang J, Wu F, Gong W (2004) Purification, characterization and preliminary crystallographic studies of a novel plant defensin from Pachyrrhizu serosus seeds. Acta Crystallogr D Biol Crystallogr 60:1121–1124

    Article  CAS  PubMed  Google Scholar 

  • Song X, Zhang M, Zhou Z, Gong W (2011) Ultra-high resolution crystal structure of a dimeric defensin SPE10. FEBS Lett 585:300–306

    Article  CAS  PubMed  Google Scholar 

  • Spelbrink RG, Dilmac N, Allen A, Smith TJ, Shah DM, Hockerman GH (2004) Differential Antifungal and Calcium Channel-Blocking Activity among Structurally Related Plant Defensins. Plant Physiol 135(4):2055–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stotz HU, Thomson J, Wang Y (2009) Plant defensins: defense, development and application. Plant Signal Behav 4:1010–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swathi Anuradha T, Divya K, Jami SK, Kirti PB (2008) Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Rep 27:1777

    Article  CAS  PubMed  Google Scholar 

  • Tam JP, Wang S, Wong KH, Tan WL (2015) Antimicrobial peptides from plants. Pharmaceuticals 8:711–757

    CAS  PubMed  Google Scholar 

  • Tavares LS, Santos MO, Viccini LF, Moreira JS, Miller RN, Franco OL (2008) Biotechnological potential of antimicrobial peptides from flowers. Peptide 29:1842–1851

    Article  CAS  Google Scholar 

  • Terras FR, Goderis IJ, Van Leuven F, Vanderleyden J, Cammue BP, Broekaert WF (1992) In vitro antifungal activity of a radish (Raphanus sativus L.) seed protein homologous to nonspecific lipid transfer proteins. Plant Physiol 100:1055–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terras F, Schoofs H, De Bolle M, Van Leuven F, Rees SB, Vanderleyden J, Cammue B, Broekaert WF (1992) Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem 267:15301–15309

    CAS  PubMed  Google Scholar 

  • Terras FRG, Schoofs HME, Thevissen K, Osborn R, Vanderleyden J, Cammue BPA, Broekaert WF (1993) Synergistic enhancement of the antifungal activity of wheat and barley thionins by radish and oilseed rape 2S albumins and by barley trypsin inhibitors. Plant Physiol 103:1311–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terras FRG, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, den Vanderley J, Cammue BPA, Broekaert WF (1995) Small cysteine-rich antifungal proteins from radish: their role in host defence. Plant Cell 7:573–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thevissen K, Ghazi A, De Samblanx GW, Brownlee C, Osborn RW, Broekaert WF (1996) Fungal membrane responses induced by plant defensins and thionins. J Biol Chem 271:15018–15025

    Article  CAS  PubMed  Google Scholar 

  • Thevissen K, Osborn RW, Acland DP, Broekaert WF (2000) Specific binding sites for an antifungal plant defensin from dahlia (Dahlia merckii) on fungal cells are required for antifungal activity. Mol Plant Microbe Interact 13:54–61

    Article  CAS  PubMed  Google Scholar 

  • Thevissen K, Cammue BP, Lemaire K, Winderickx J, Dickson RC, Lester RL, Ferket KK, Van Even F, Parret AH, Broekaert WF (2000) A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of Saccharomyces cerevisiae to an antifungal plant defensin from dahlia (Dahlia merckii). Proceed Nat Acad Sci 97:9531–9536

    Article  CAS  Google Scholar 

  • Thevissen K, Warnecke DC, Francois IE, Leipelt M, Heinz E, Ott C, Zahringer U, Thomma BP, Ferket KK, Cammue BP (2004) Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem 279:3900–3905

    Article  CAS  PubMed  Google Scholar 

  • Thomma BP, Cammue BP, Thevissen K (2002) Plant defensins. Planta 216:193–202

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Mishra DK, Singh A, Singh PK, Tuli R (2008) Expression of a synthetic Cry1EC gene for resistance against Spodoptera litura in transgenic peanut (Arachis hypogaea L.). Plant Cell Rep 27:1017–1025

    Article  CAS  PubMed  Google Scholar 

  • Van der Weerden NL, Lay FT, Anderson MA (2008) The plant defensin, nad1, enters the cytoplasm of Fusarium oxysporum hyphae. J Biol Chem 283:14445–14452

    Article  CAS  PubMed  Google Scholar 

  • Vasavirama K, Kirti PB (2011) Expression, affinity purification, and functional characterization of recombinant fusion gene. World Congress on Biotechnol (21–23 March 2011). J Microbial Biochem Technol S1(013): 35.

  • Vasavirama K, Kirti PB (2013) Constitutive expression of a fusion gene comprising Trigonella foenum-graecum defensin (Tfgd2) and Raphanus sativus antifungal protein (RsAFP2) confers enhanced disease and insect resistance in transgenic tobacco. Plant Cell Tiss Org Cult 115:309–319

    Article  CAS  Google Scholar 

  • Velivelli SLS, Islam KT, Hobson E, Shah DM (2018) Modes of Action of a Bi-domain Plant Defensin MtDef5 Against a Bacterial Pathogen Xanthomonas campestris. Front Microbiol 9:934. https://doi.org/10.3389/fmicb.2018.00934

    Article  PubMed  PubMed Central  Google Scholar 

  • Vriens K, Bruno PA, Cammue BP, Thevissen K (2014) Antifungal Plant Defensins: Mechanisms of Action and Production. Molecules 19:12280–12303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Nowak G, Culley D, Hadwiger LA, Fristensky B (1999) Constitutive expression of pea defense gene DRR206 confers resistance to blackleg (Leptosphaeria maculans) disease in transgenic canola (Brassica napus). Mol Plant-Microbe Interact 12:410–418

    Article  CAS  Google Scholar 

  • Wijaya R, Neumann GM, Condron R, Hughes AB, Polya GM (2000) Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin. Plant Sci 159:243–255

    Article  CAS  PubMed  Google Scholar 

  • Wimley WC (2010) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS ChemBiol 10:905–917

    Article  CAS  Google Scholar 

  • Wong JH, Xia L, Ng T (2007) A review of defensins of diverse origins. Curr Prot Peptide Sci 8:446–459

    Article  CAS  Google Scholar 

  • Yamano A, Heo NH, Teeter MM (1997) Crystal structure of Ser-22/Ile-25 form crambin confirms solvent, side chain substate correlations. J Biol Chem 272:9597–9600

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Biragyn A, Kwak LW, Oppenheim JJ (2002) Mammalian defensins in immunity: more than just microbicidal. Trends Immunol 23:291–296

    Article  CAS  PubMed  Google Scholar 

  • Zainal Z, Marouf E, Ismail I, Fei CK (2009) Expression ofthe Capsicuum annum (Chili) defensin gene in transgenic tomatoes confers enhanced resistance to fungal pathogens. Am J Physiol 4:70–79

    CAS  Google Scholar 

  • Zhu S (2008) Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of CSαβ defensins. Mol Immunol 45:828–838

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Bateman A, Singh A, Solomon S (1989) Isolation and biological activity of corticostatic peptides (anti-ACTH). Endocr Res 15:129–149

    Article  CAS  PubMed  Google Scholar 

  • Zhu YJ, Agbayani R, Moore PH (2007) Ectopic expressionof Dahlia merckii defensin DmAMP1 improves papaya resistance to Phytophthora palmivora by reducing pathogen vigor. Planta 226:87–97

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Mercier C, Koussounadis A, Secombes C (2007) Discovery of multiple beta-defensin like homologues in teleost fish. Mol Immunol 44:638–647

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raham Sher Khan.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sher Khan, R., Iqbal, A., Malak, R. et al. Plant defensins: types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants. 3 Biotech 9, 192 (2019). https://doi.org/10.1007/s13205-019-1725-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1725-5

Keywords

Navigation