Abdelmageed AHA, Gruda N (2009) Influence of high temperatures on gas exchange rate and growth of eight tomato cultivars under controlled heat stress conditions. Eur J Hortic Sci 74:152–159
CAS
Google Scholar
Acquaah G (2009) Principles of plant genetics and breeding. Wiley, New York
Google Scholar
Amooaghaie R, Nikzad K (2013) The role of nitric oxide in priming-induced low-temperature tolerance in two genotypes of tomato. Seed Sci Res 23:123–131. https://doi.org/10.1017/S0960258513000068
CAS
Article
Google Scholar
Amudha J, Balasubramani G (2011) Recent molecular advances to combat abiotic stress tolerance in crop plants. Biotechnol Mol Biol Rev 6:31–58
CAS
Google Scholar
Anderson EN (2005) Everyone eats: understanding food and culture. New York University Press, New York
Google Scholar
Battilani A, Prieto MH, Argerich C et al (2012) Tomato. In: Steduto P, Hsiao TC, Fereres E, Raes D (eds) Crop yield response to water, irrigation and drainage Paper 66. pp 174–180
Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273. https://doi.org/10.3389/fpls.2013.00273
Article
PubMed
PubMed Central
Google Scholar
Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol Evol 28:230–238. https://doi.org/10.1016/j.tree.2012.10.012
Article
PubMed
Google Scholar
Böndel KB, Nosenko T, Stephan W (2018) Signatures of natural selection in abiotic stress-responsive genes of Solanum chilense. R Soc Open Sci 5:171198. https://doi.org/10.1098/rsos.171198
CAS
Article
PubMed
PubMed Central
Google Scholar
Boyer JS, Byrne P, Cassman KG et al (2013) The US drought of 2012 in perspective: a call to action. Glob Food Sec 2:139–143. https://doi.org/10.1016/j.gfs.2013.08.002
Article
Google Scholar
Brown L (2012) World on the edge: how to prevent environmental and economic collapse. Routledge, New York
Book
Google Scholar
Chai Q, Gan Y, Turner NC et al (2014) Water-saving innovations in Chinese agriculture. Adv Agron 126:149–201. https://doi.org/10.1016/B978-0-12-800132-5.00002-X
Article
Google Scholar
Chai Q, Gan Y, Zhao C et al (2016) Regulated deficit irrigation for crop production under drought stress. A review. Agron Sustain Dev 36:1–21. https://doi.org/10.1007/s13593-015-0338-6
Article
Google Scholar
Chen S, Liu A, Zhang S et al (2013) Overexpression of mitochondrial uncoupling protein conferred resistance to heat stress and Botrytis cinerea infection in tomato. Plant Physiol Biochem 73:245–253. https://doi.org/10.1016/j.plaphy.2013.10.002
CAS
Article
PubMed
Google Scholar
Cheng L, Zou Y, Ding S et al (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol 51:489–499. https://doi.org/10.1111/j.1744-7909.2009.00816.x
CAS
Article
PubMed
Google Scholar
Deinlein U, Stephan AB, Horie T et al (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379. https://doi.org/10.1016/j.tplants.2014.02.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228. https://doi.org/10.1016/j.envexpbot.2014.06.021
CAS
Article
Google Scholar
Dixit S (2008) Identification of plant genes for abiotic stress resistance. Doctoral thesis, Wageningen University
Dixon GR, Aldous DE (2014) Horticulture: plants for people and places. Environ Hortic 2:1–949. https://doi.org/10.1007/978-94-017-8581-5
Article
Google Scholar
FAO (2011) http://faostat.fao.org. Accessed 11 Feb 2018
Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319. https://doi.org/10.1093/jxb/erh003
CAS
Article
Google Scholar
Fragkostefanakis S, Simm S, Paul P et al (2015) Chaperone network composition in Solanum lycopersicum explored by transcriptome profiling and microarray meta-analysis. Plant Cell Environ 38:693–709. https://doi.org/10.1111/pce.12426
CAS
Article
PubMed
Google Scholar
Frank G, Pressman E, Ophir R et al (2009) Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot 60:3891–3908. https://doi.org/10.1093/jxb/erp234
CAS
Article
PubMed
PubMed Central
Google Scholar
Gan Y, Siddique KHM, Turner NC et al (2013) Ridge-furrow mulching systems-an innovative technique for boosting crop productivity in semiarid rain-fed environments. Adv Agron 118:429–476. https://doi.org/10.1016/B978-0-12-405942-9.00007-4
Article
Google Scholar
García-Abellan JO, Egea I, Pineda B et al (2014) Heterologous expression of the yeast HAL5 gene in tomato enhances salt tolerance by reducing shoot Na+ accumulation in the long term. Physiol Plant 152:700–713. https://doi.org/10.1111/ppl.12217
CAS
Article
PubMed
Google Scholar
Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
CAS
Article
Google Scholar
Goel D, Singh AK, Yadav V et al (2010) Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L.). Protoplasma 245:133–141. https://doi.org/10.1007/s00709-010-0158-0
CAS
Article
PubMed
Google Scholar
Gould WA (1992) Tomato production, processing, and technology. Elsevier, New York
Book
Google Scholar
Gourdji SM, Sibley AM, Lobell DB (2013) Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ Res Lett 8:24041. https://doi.org/10.1088/1748-9326/8/2/024041
Article
Google Scholar
Greco M, Chiappetta A, Bruno L, Bitonti MB (2012) In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. J Exp Bot 63:695–709. https://doi.org/10.1093/jxb/err313
CAS
Article
PubMed
Google Scholar
Grube R, Livingstone KD, Zamir D et al (1999) Comparative analysis of disease resistance within the Solanaceae. Plant Anim Genome VII Conf San Diego P350:873–887
Google Scholar
Gujjar RS, Karkute SG, Rai A, Singh M, Singh B (2018) Proline-rich proteins may regulate free cellular proline levels during drought stress in tomato. Curr Sci. https://doi.org/10.18520/cs/v114/i04/915-920
Article
Google Scholar
Hsieh T, Lee J, Yang P et al (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094. https://doi.org/10.1104/pp.003442.1086
CAS
Article
PubMed
PubMed Central
Google Scholar
Hu D-G, Ma Q-J, Sun C-H et al (2016) Overexpression of MdSOS2L1, a CIPK protein kinase, increases the antioxidant metabolites to enhance salt tolerance in apple and tomato. Physiol Plant 156:201–214. https://doi.org/10.1111/ppl.12354
CAS
Article
PubMed
Google Scholar
Huertas R, Olías R, Eljakaoui Z et al (2012) Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato. Plant, Cell Environ 35:1467–1482. https://doi.org/10.1111/j.1365-3040.2012.02504.x
CAS
Article
Google Scholar
Ingram J (2011) A food systems approach to researching food security and its interactions with global environmental change. Food Secur 3:417–431. https://doi.org/10.1007/s12571-011-0149-9
Article
Google Scholar
Julkowska MM, Testerink C (2015) Tuning plant signaling and growth to survive salt. Trends Plant Sci 20:586–594. https://doi.org/10.1016/j.tplants.2015.06.008
CAS
Article
PubMed
Google Scholar
Karapanos IC, Akoumianakis KA, Olympios CM, Passam HC (2010) Tomato pollen respiration in relation to in vitro germination and pollen tube growth under favourable and stress-inducing temperatures. Sex Plant Reprod 23:219–224. https://doi.org/10.1007/s00497-009-0132-1
CAS
Article
PubMed
Google Scholar
Karkute SG, Krishna R, Ansari WA, Singh B, Singh PM, Singh M, Singh AK (2019) Heterologous expression of the AtDREB1A gene in tomato confers tolerance to chilling stress. Biol Plant. https://doi.org/10.32615/bp.2019.031
Article
Google Scholar
Khan AL, Waqas M, Asaf S et al (2017) Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environ Exp Bot 133:58–69. https://doi.org/10.1016/j.envexpbot.2016.09.009
CAS
Article
Google Scholar
Kong F, Deng Y, Wang G et al (2014) LeCDJ1, a chloroplast DnaJ protein, facilitates heat tolerance in transgenic tomatoes. J Integr Plant Biol 56:63–74. https://doi.org/10.1111/jipb.12119
CAS
Article
PubMed
Google Scholar
Kotak S, Larkindale J, Lee U et al (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316. https://doi.org/10.1016/j.pbi.2007.04.011
CAS
Article
PubMed
Google Scholar
Krasensky J, Jonak C (2012) Drought, salt, and temperature stress induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608
CAS
Article
Google Scholar
Kumar A, Verma JP (2018) Does plant—microbe interaction confer stress tolerance in plants: a review? Microbiol Res 207:41–52. https://doi.org/10.1016/j.micres.2017.11.004
CAS
Article
PubMed
Google Scholar
Kumar K, Aggarwal C, Sapna B et al (2018) Microbial genes in crop improvement. In: Crop improvement through microbial biotechnology. Elsevier, Amsterdam, Netherlands, pp 39–56. https://doi.org/10.1016/B978-0-444-63987-5.00003-7
Chapter
Google Scholar
Laloi C, Apel K, Danton A (2004) Reactive oxygen signalling: the latest news. Curr Opin Plant Biol 7:323e326
Article
Google Scholar
Larkindale J (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897. https://doi.org/10.1104/pp.105.062257
CAS
Article
PubMed
PubMed Central
Google Scholar
Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748. https://doi.org/10.1093/jxb/err210
CAS
Article
PubMed
Google Scholar
Lee JT, Prasad V, Yang PT et al (2003) Expression of Arabidopsis CBF1 regulated by an ABA/stress inducible promoter in transgenic tomato confers stress tolerance without affecting yield. Plant Cell Environ 26:1181–1190. https://doi.org/10.1046/j.1365-3040.2003.01048.x
CAS
Article
Google Scholar
Li Z, Peng Y, Zhang XQ et al (2014) Exogenous spermidine improves water stress tolerance of white clover (Trifolium repens L.) involved in antioxidant defence, gene expression and proline metabolism. Plant Omics 7:517–526. https://doi.org/10.3390/molecules191118003
CAS
Article
Google Scholar
Lim MY, Jeong BR, Jung M, Harn CH (2016) Transgenic tomato plants expressing strawberry d-galacturonic acid reductase gene display enhanced tolerance to abiotic stresses. Plant Biotechnol Rep 10:105–116. https://doi.org/10.1007/s11816-016-0392-9
Article
Google Scholar
Lin D, Xia J, Wan S (2010) Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytol 188:187–198. https://doi.org/10.1111/j.1469-8137.2010.03347.x
Article
PubMed
Google Scholar
Liu H, Zhou Y, Li H et al (2018) Molecular and functional characterization of ShNAC1, an NAC transcription factor from Solanum habrochaites. Plant Sci 271:9–19. https://doi.org/10.1016/J.PLANTSCI.2018.03.005
CAS
Article
PubMed
Google Scholar
Lobell DB, Roberts MJ, Schlenker W et al (2014) Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science (80-) 344:516–519. https://doi.org/10.1126/science.1251423
CAS
Article
Google Scholar
Lu SW, Qi F, Li TL (2012) Effects of salt stress on sugar content and sucrose metabolism in tomato fruit. China Veg 20:56–61
CAS
Google Scholar
Masle J, Gilmore SR, Farquhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436:866–870. https://doi.org/10.1038/nature03835
CAS
Article
PubMed
Google Scholar
McDowell NG (2011) Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol 155:1051–1059. https://doi.org/10.1104/pp.110.170704
CAS
Article
PubMed
PubMed Central
Google Scholar
Moghaieb REA, Tanaka N, Saneoka H et al (2000) Expression of betaine aldehyde dehydrogenase gene in transgenic tomato hairy roots leads to the accumulation of glycine betaine and contributes to the maintenance of the osmotic potential under salt stress. Soil Sci Plant Nutr 46:873–883. https://doi.org/10.1080/00380768.2000.10409153
CAS
Article
Google Scholar
Moghaieb REA, Nakamura A, Saneoka H, Fujita K (2011) Evaluation of salt tolerance in ectoine-transgenic tomato plants (Lycopersicon esculentum) in terms of photosynthesis, osmotic adjustment, and carbon partitioning. GM Crops 2:58–65. https://doi.org/10.4161/gmcr.2.1.15831
Article
PubMed
Google Scholar
Mohanty A, Kathuria H, Ferjani A et al (2002) Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the coda gene are highly tolerant to salt stress. Theor Appl Genet 106:51–57. https://doi.org/10.1007/s00122-002-1063-5
CAS
Article
PubMed
Google Scholar
Morrow G, Tanguay RM (2012) Small heat shock protein expression and functions during development. Int J Biochem Cell Biol 44:1613–1621. https://doi.org/10.1016/j.biocel.2012.03.009
CAS
Article
PubMed
Google Scholar
Nautiyal PC, Shono M, Egawa Y (2005) Enhanced thermotolerance of the vegetative part of MT-sHSP transgenic tomato line. Sci Hortic (Amsterdam) 105:393–409. https://doi.org/10.1016/j.scienta.2005.02.001
Article
Google Scholar
Nebauer S, Sánchez M, Martínez L et al (2013) Differences in photosynthetic performance and its correlation with growth among tomato cultivars in response to different salts. Plant Physiol Biochem 63:61–69. https://doi.org/10.1016/j.plaphy.2012.11.006 PMID: 23232248
CAS
Article
PubMed
Google Scholar
Neta-Sharir I (2005) Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell Online 17:1829–1838. https://doi.org/10.1105/tpc.105.031914
CAS
Article
Google Scholar
Nieto-Sotelo J (2002) Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth. Plant Cell Online 14:1621–1633. https://doi.org/10.1105/tpc.010487
CAS
Article
Google Scholar
Nir I, Moshelion M, Weiss D (2014) The Arabidopsis gibberellin methyl transferase 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato. Plant Cell Environ 37:113–123. https://doi.org/10.1111/pce.12135
CAS
Article
PubMed
Google Scholar
Parfitt J, Barthel M, MacNaughton S (2010) Food waste within food supply chains: quantification and potential for change to 2050. Philos Trans R Soc B Biol Sci 365:3065–3081. https://doi.org/10.1098/rstb.2010.0126
Article
Google Scholar
Park S, Li J, Pittman JK et al (2005) Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci 102:18830–18835. https://doi.org/10.1073/pnas.0509512102
CAS
Article
PubMed
Google Scholar
Park EJ, Jeknić Z, Pino MT et al (2007) Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Plant Cell Environ 30:994–1005. https://doi.org/10.1111/j.1365-3040.2007.01694.x
CAS
Article
PubMed
Google Scholar
Parmar N, Singh KH, Sharma D, Singh L, Kumar P, Nanjundan J, Khan YJ, Chauhan DK, Thakur AK (2017) Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review. 3 Biotech 7(4):239. https://doi.org/10.1007/s13205-017-0870-y
Article
PubMed
PubMed Central
Google Scholar
Peleman JD, Van Der Voort JR (2003) Breeding by design. Trends Plant Sci 8:330–334. https://doi.org/10.1016/S1360-1385(03)00134-1
CAS
Article
PubMed
Google Scholar
Popp HW (1951) An introduction to plant physiology. Science Publishers, New York
Book
Google Scholar
Prasanna HC, Sinha DP, Rai GK, Krishna R, Kashyap SP, Singh NK, Singh M, Malathi VG (2015) Pyramiding T y-2 and T y-3 genes for resistance to monopartite and bipartite tomato leaf curl viruses of India. Plant Pathol 64(2):256–264. https://doi.org/10.1111/ppa.12267
CAS
Article
Google Scholar
Rai GK, Rai NP, Kumar S et al (2012) Effects of explant age, germination medium, pre-culture parameters, inoculation medium, pH, washing medium, and selection regime on Agrobacterium-mediated transformation of tomato. Vitr Cell Dev Biol Plant 48:565–578. https://doi.org/10.1007/s11627-012-9442-3
CAS
Article
Google Scholar
Rai AC, Singh M, Shah K (2013a) Engineering drought tolerant tomato plants over-expressing BcZAT12 gene encoding a C2H2 zinc finger transcription factor. Phytochemistry 85:44–50. https://doi.org/10.1016/j.phytochem.2012.09.007
CAS
Article
PubMed
Google Scholar
Rai GK, Rai NP, Rathaur S et al (2013b) Expression of rd29A:: AtDREB1A/CBF3 in tomato alleviates drought-induced oxidative stress by regulating key enzymatic and non-enzymatic antioxidants. Plant Physiol Biochem 69:90–100. https://doi.org/10.1016/j.plaphy.2013.05.002
CAS
Article
PubMed
Google Scholar
Rivero RM, Kojima M, Gepstein A et al (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci 104:19631–19636. https://doi.org/10.1073/pnas.0709453104
Article
PubMed
Google Scholar
Roy R, Purty RS, Agrawal V, Gupta SC (2006) Transformation of tomato cultivar “Pusa Ruby” with bspA gene from Populus tremula for drought tolerance. Plant Cell Tissue Organ Cult 84:55–67. https://doi.org/10.1016/j.ctrv.2005.12.002
CAS
Article
Google Scholar
Rosenzweig C, Elliott J, Deryng D et al (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci 111:3268–3273. https://doi.org/10.1073/pnas.1222463110
CAS
Article
PubMed
Google Scholar
Ruiz-Vera UM, Siebers MH, Drag DW et al (2015) Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated [CO2]. Glob Chang Biol 21:4237–4249. https://doi.org/10.1111/gcb.13013
Article
PubMed
Google Scholar
Ryu H, Cho Y-G (2015) Plant hormones in salt stress tolerance. J Plant Biol 58:147–155. https://doi.org/10.1007/s12374-015-0103-z
CAS
Article
Google Scholar
Saadi S, Todorovic M, Pereira LS (2010) Climate change and Mediterranean agriculture: 2. Impacts on wheat and tomato yields and water productivity. Elsevier 147:1–14
Google Scholar
Sahi C, Singh A, Blumwald E, Grover A (2006) Beyond osmolytes and transporters: novel plant salt-stress tolerance-related genes from transcriptional profiling data. Physiol Plant 127:1–9. https://doi.org/10.1111/j.1399-3054.2005.00610.x
CAS
Article
Google Scholar
Sakuma Y (2006) Functional analysis of an Arabidopsis transcription factor. DREB2A, involved in drought-responsive gene expression. Plant Cell Online 18:1292–1309. https://doi.org/10.1105/tpc.105.035881
CAS
Article
Google Scholar
Sánchez-Rodríguez E, Rubio-Wilhelmi MM, Cervilla LM et al (2010) Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Sci 178:30–40. https://doi.org/10.1016/j.plantsci.2009.10.001
CAS
Article
Google Scholar
Sanmiya K, Suzuki K, Egawa Y, Shono M (2004) Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Lett 557:265–268
CAS
Article
Google Scholar
Schramm F, Larkindale J, Kiehlmann E et al (2008) A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J 53:264–274. https://doi.org/10.1111/j.1365-313X.2007.03334.x
CAS
Article
PubMed
Google Scholar
Scippa GS, Griffiths A, Chiatante D, Bray EA (2000) The H1 histone variant of tomato, H1-S, is targeted to the nucleus and accumulates in chromatin in response to water-deficit stress. Planta 211:173–181. https://doi.org/10.1007/s004250000278
CAS
Article
PubMed
Google Scholar
Seki M, Narusaka M, Abe H et al (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61. https://doi.org/10.2307/3871153
CAS
Article
PubMed
PubMed Central
Google Scholar
Seong ES, Cho HS, Choi D, Joung YH, Lim CK, Hur JH, Wang MH (2007) Tomato plants overexpressing CaKR1 enhanced tolerance to salt and oxidative stress. Biochem Biophys Res Commun 363:983–988. https://doi.org/10.1016/j.bbrc.2007.09.104
CAS
Article
PubMed
Google Scholar
Shah K, Singh M, Rai AC (2013) Effect of heat-shock induced oxidative stress is suppressed in BcZAT12 expressing drought tolerant tomato. Phytochemistry 95:109–117. https://doi.org/10.1016/j.phytochem.2013.07.026
CAS
Article
PubMed
Google Scholar
Silva Dias J, Ryder EJ (2011) World vegetable industry: production, breeding, trends. Hortic Rev 38:299–356
Google Scholar
Tung SA, Smeeton R, White CA et al (2008) Over-expression of LeNCED1 in tomato (Solanum lycopersicum L.) with the rbcS3C promoter allows recovery of lines that accumulate very high levels of abscisic acid and exhibit severe phenotypes. Plant Cell Environ 31:968–981. https://doi.org/10.1111/j.1365-3040.2008.01812.x
CAS
Article
PubMed
Google Scholar
Turk H, Erdal S, Genisel M et al (2014) The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold-stressed wheat seedlings. Plant Growth Regul 74:139–152. https://doi.org/10.1007/s10725-014-9905-0
CAS
Article
Google Scholar
Verslues PE, Agarwal M, Katiyar-Agarwal S et al (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539. https://doi.org/10.1111/j.1365-313X.2005.02593.x
CAS
Article
PubMed
Google Scholar
Wang Y, Frei M (2011) Stressed food—the impact of abiotic environmental stresses on crop quality. Agric Ecosyst Environ 141:271–286. https://doi.org/10.1016/j.agee.2011.03.017
Article
Google Scholar
Wang Y, Wisniewski M, Meilan R et al (2005) Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. J Am Soc Hortic Sci 130:167–173
CAS
Article
Google Scholar
Wang BQ, Zhang QF, Liu JH, Li GH (2011) Overexpression of PtADC confers enhanced dehydration and drought tolerance in transgenic tobacco and tomato: Effect on ROS elimination. Biochem Biophys Res Commun 413:10–16. https://doi.org/10.1016/j.bbrc.2011.08.015
CAS
Article
PubMed
Google Scholar
Wang JY, Lai L di, Tong SM, Li QL (2013) Constitutive and salt-inducible expression of SlBADH gene in transgenic tomato (Solanum lycopersicum L. cv. Micro-Tom) enhances salt tolerance. Biochem Biophys Res Commun 432:262–267. https://doi.org/10.1016/j.bbrc.2013.02.001
CAS
Article
PubMed
Google Scholar
Wang G, Kong F, Zhang S et al (2015) A tomato chloroplast-targeted DnaJ protein protects Rubisco activity under heat stress. J Exp Bot 66:3027–3040. https://doi.org/10.1093/jxb/erv102
CAS
Article
PubMed
Google Scholar
Waters ER (2013) The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot 64:391–403. https://doi.org/10.1093/jxb/ers355
CAS
Article
PubMed
Google Scholar
Wei D, Zhang W, Wang C et al (2017) Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants. Plant Sci 257:74–83. https://doi.org/10.1016/j.plantsci.2017.01.012
CAS
Article
PubMed
Google Scholar
Yarra R, He SJ, Abbagani S et al (2012) Overexpression of a wheat Na+/H+ antiporter gene (TaNHX2) enhances tolerance to salt stress in transgenic tomato plants (Solanum lycopersicum L.). Plant Cell Tissue Organ Cult 111:49–57. https://doi.org/10.1007/s11240-012-0169-y
CAS
Article
Google Scholar
Zhai Y, Yang Q, Hou M (2015) The effects of saline water drip irrigation on tomato yield, quality, and blossom-end rot incidence—a 3a case study in the South of China. PLoS One 10:e0142204. https://doi.org/10.1371/journal.pone.0142204
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhao C, Shono M, Sun A et al (2007) Constitutive expression of an endoplasmic reticulum small heat shock protein alleviates endoplasmic reticulum stress in transgenic tomato. J Plant Physiol 164:835–841. https://doi.org/10.1016/j.jplph.2006.06.004
CAS
Article
PubMed
Google Scholar
Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768. https://doi.org/10.1038/90824
CAS
Article
PubMed
Google Scholar
Zhang X, Fowler SG, Cheng H et al (2004) Freezing-sensitive tomato has a functional CBF cold responsive pathway, but a CBF regulon that differs from that of freezing tolerant Arabidopsis. Plant J 39:905–919
CAS
Article
Google Scholar
Zhu M, Chen G, Zhang J et al (2014) The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Rep 33:1851–1863. https://doi.org/10.1007/s00299-014-1662-z
CAS
Article
PubMed
Google Scholar