Skip to main content
Log in

Astaxanthin supplementation reduces dichlorvos-induced cytotoxicity in Saccharomyces cerevisiae

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

This study evaluates the protective effect of astaxanthin against dichlorvos cytotoxicity in yeast Saccharomyces cerevisiae. Dichlorvos induce a dose-dependent cytotoxicity in yeast cells, which is mediated by oxidative stress. Our experimental results showed pre-treatment with astaxanthin enhances cell viability by 20–30% in yeast cells exposed to dichlorvos. A decrease in DCF fluorescence intensity and lipid peroxidation, increased SOD activity, and glutathione levels in astaxanthin-treated cells indicate that astaxanthin protected the cells against dichlorvos-induced oxidative stress. Reduced chromatin condensation and nuclear fragmentation in astaxanthin pre-treated cells also indicate that astaxanthin rescued the cells from dichlorvos-induced apoptosis. Our overall results suggest that dichlorvos induces oxidative stress-mediated cytotoxicity in yeast cells, and that was rescued by astaxanthin pre-treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amari F, Fettouche A, Samra MA et al (2008) Antioxidant small molecules confer variable protection against oxidative damage in yeast mutants. J Agric Food Chem 56:11740–11751

    Article  CAS  Google Scholar 

  • Ambati RR, Moi PS, Ravi S, Aswathanarayana RG (2014) Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Mar Drugs 12:128–152

    Article  Google Scholar 

  • Augusti PR, Quatrin A, Somacal S et al (2012) Astaxanthin prevents changes in the activities of thioredoxin reductase and paraoxonase in hypercholesterolemic rabbits. J Clin Biochem Nutr 51:42–49

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  Google Scholar 

  • Ben Salem I, Boussabbeh M, Bacha H, Abid S (2015) Dichlorvos-induced toxicity in HCT116 cells: involvement of oxidative stress and apoptosis. Pestic Biochem Physiol 119:62–66

    Article  CAS  Google Scholar 

  • Ben Salem I, Boussabbeh M, Graiet I et al (2016) Quercetin protects HCT116 cells from Dichlorvos-induced oxidative stress and apoptosis. Cell Stress Chaperones 21:179–186

    Article  CAS  Google Scholar 

  • Booth ED, Jones E, Elliott BM (2007) Review of the in vitro and in vivo genotoxicity of dichlorvos. Regul Toxicol Pharmacol 49:316–326

    Article  CAS  Google Scholar 

  • Botstein D, Chervitz SA, Cherry JM (1997) Yeast as a model organism. Science 277:1259–1260

    Article  CAS  Google Scholar 

  • Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    Article  CAS  Google Scholar 

  • Das S (2013) A review of Dichlorvos toxicity in fish. Curr World Environ J 8:143–149

    CAS  Google Scholar 

  • de Sá RA, de Castro FAV, Eleutherio ECA et al (2013) Brazilian propolis protects Saccharomyces cerevisiae cells against oxidative stress. Braz J Microbiol 44:993–1000

    Article  Google Scholar 

  • Espeland M, Irestedt M, Johanson K et al (2010) Dichlorvos exposure impedes extraction and amplification of DNA from insects in museum collections. Front Zool 7:2

    Article  Google Scholar 

  • Farrugia G, Balzan R (2012) Oxidative stress and programmed cell death in yeast. Front Oncol 2:1–21

    Article  Google Scholar 

  • Fassett RG, Coombes JS (2011) Astaxanthin: a potential therapeutic agent in cardiovascular disease. Mar Drugs 9:447–465

    Article  CAS  Google Scholar 

  • Ghani MA, Barril C, Bedgood DR, Prenzler PD (2017) Measurement of antioxidant activity with the thiobarbituric acid reactive substances assay. Food Chem 230:195–207

    Article  CAS  Google Scholar 

  • Godic A, Poljšak B, Adamic M, Dahmane R (2014) The role of antioxidants in skin cancer prevention and treatment. Oxid Med Cell Longev 2014:860479

    Article  Google Scholar 

  • France L (1991) Dichlorvos. In: Occupational exposures in insecticide application, and some pesticides. IARC monographs on the evaluation of carcinogenic risks to humans vol. 53, pp 267–307

  • Higuera-Ciapara I, Félix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46:185–196

    Article  CAS  Google Scholar 

  • Howlett NG, Avery SV (1997) Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl Environ Microbiol 63:2971–2976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jamnik P, Medved P, Raspor P (2006) Increased glutathione content in yeast Saccharomyces cerevisiae exposed to NaCl. Ann Microbiol 56:175–178

    Article  CAS  Google Scholar 

  • Kim SH, Kim H (2018) Inhibitory effect of astaxanthin on oxidative stress-induced mitochondrial dysfunction-a mini-review. Nutrients 10:1137

    Article  Google Scholar 

  • Kiruthika B, Padma PR (2013) Zea mays leaf extracts protect Saccharomyces cerevisiae cell against oxidative stress-induced cell death. J Acute Med 3:83–92. https://doi.org/10.1016/j.jacme.2013.06.005

    Article  Google Scholar 

  • Koch HP, Hofeneder M, Bohne B (1993) The yeast test: an alternative method for the testing of acute toxicity of drug substances and environmental chemicals. Methods Find Exp Clin Pharmacol 15:141–152

    CAS  PubMed  Google Scholar 

  • Madamanchi NR, Donahue JL, Cramer CL et al (1994) Differential response of Cu, Zn superoxide dismutases in two pea cultivars during a short-term exposure to sulfur dioxide. Plant Mol Biol 26:95–103

    Article  CAS  Google Scholar 

  • Mangels AR, Holden JM, Beecher GR et al (1993) Carotenoid content of fruits and vegetables: an evaluation of analytic data. J Am Diet Assoc 93:284–296

    Article  CAS  Google Scholar 

  • Marešová L, Sychrová H (2007) Applications of a microplate reader in yeast physiology research. Biotechniques 43:667–672

    Article  Google Scholar 

  • Marshall T, Williams KM (1993) Bradford protein assay and the transition from an insoluble to a soluble dye complex: effects of sodium dodecly sulphate and other additives. J Biochem Biophys Methods 26:237–240

    Article  CAS  Google Scholar 

  • Ojo O, Oyinloye B, Ajiboye B et al (2014) Dichlorvos-induced oxidative stress in rat brain: protective effects of the ethanolic extract of Alstonia boonei stem bark. Asian J Pharm 8:216

    Article  CAS  Google Scholar 

  • Pancetti F, Olmos C, Dagnino-Subiabre A et al (2007) Noncholinesterase effects induced by organophosphate pesticides and their relationship to cognitive processes: implication for the action of acylpeptide hydrolase. J Toxicol Environ Heal Part B 10:623–630

    Article  CAS  Google Scholar 

  • Papa TBR, Pinho VD, Do Nascimento ESPD et al (2015) Astaxanthin diferulate as a bifunctional antioxidant. Free Radic Res 49:102–111

    Article  CAS  Google Scholar 

  • Parveen M, Momose Y, Kitagawa E et al (2003) Bioassay of pesticide lindane using yeast-DNA microarray technology. ChemBio Inform J 3:12–29

    Article  CAS  Google Scholar 

  • Pereira MD, Eleutherio ECA, Panek AD (2001) Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae. BMC Microbiol 1:1–10

    Article  Google Scholar 

  • Pingali PL (2012) Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci 109:12302–12308

    Article  CAS  Google Scholar 

  • Probes M (2008) 15.5 Assays for apoptosis. Mol Probes 1:647–660

    Google Scholar 

  • Shahidi F, Zhong Y, Chandrasekara A (2012) Antioxidants and Human Health. In: Liangli LY, Rong C, Rong TSF (eds) Cereals and pulses: nutraceutical properties and health benefits. Wiley, Hoboken, pp 273–308

    Chapter  Google Scholar 

  • Singh R, Sharma P (2012) Dichlorvos and lindane induced oxidative stress in rat brain: protective effects of ginger. Pharmacogn Res 4:27

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from DST (EMR/2016/008025), and DBT under DBT-IPLS Program (BT/PR14554/INF/22/125/2010), DST-FIST and UGC-SAP, Govt. of India, for providing lab and instrumentation facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu Dyavaiah.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudharshan, S.J., Subramaniyan, S., Satheeshan, G. et al. Astaxanthin supplementation reduces dichlorvos-induced cytotoxicity in Saccharomyces cerevisiae. 3 Biotech 9, 88 (2019). https://doi.org/10.1007/s13205-019-1634-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1634-7

Keywords

Navigation