Skip to main content

Advertisement

Log in

Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Silicon (Si) being considered as a non-essential element for plant growth and development finds its role in providing several benefits to the plant, especially under stress conditions. Thus, Si can be regarded as “multi-talented” quasi-essential element. It is the most abundant element present in the earth’s crust after oxygen predominantly as a silicon dioxide (SiO2), a form plants cannot utilize. Plants take up Si into their root from the soil in the plant-available forms (PAF) such as silicic acid or mono silicic acid [Si(OH)4 or H4SiO4]. Nevertheless, besides being abundantly available, the PAF of Si in the soil is mostly a limiting factor. To improve Si-uptake and derived benefits therein in plants, understanding the molecular basis of Si-uptake and transport within the tissues has great importance. Numerous Si-transporters (influx and efflux) have been identified in both monocot and dicot plants. A difference in the root anatomy of both monocot and dicot plants leads to a difference in the Si-uptake mechanism. In the present review, Si-transporters identified in different species, their evolution and the Si-uptake mechanism have been addressed. Further, the role of Si in biotic and abiotic stress tolerance has been discussed. The information provided here will help to plan the research in a better way to develop more sustainable cropping system by harnessing Si-derived benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas T, Balal RM, Shahid MA, Pervez MA, Ayyub CM, Aqueel MA, Javaid MM (2015) Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiol Plant 37:1–15

    Article  CAS  Google Scholar 

  • Abdalla MM (2011a) Beneficial effects of diatomite on growth, the biochemical contents and polymorphic DNA in Lupinus albus plants grown under water stress. Agric Biol J N Am 2:207–220

    Article  CAS  Google Scholar 

  • Abdalla MM (2011b) Impact of diatomite nutrition on two Trifolium alexandrinum cultivars differing in salinity tolerance. Int J Plant Physiol Biochem 3:233–246

    CAS  Google Scholar 

  • Abdul Qados AMS, Moftah AE (2015) Influence of silicon and nano-silicon on germination growth and yield of faba bean (Vicia faba L.) under salt stress conditions. Am J Soc Hortic Sci 5(6):509–524

    CAS  Google Scholar 

  • Abu-Muriefah SS (2015) Effects of Silicon on Faba Bean (Vicia faba L.) plants grown under heavy metal stress conditions. Afr J Agric Sci Technol (AJAST) 3(5):255–268

    Google Scholar 

  • Adhikari T, Kundu S, Rao AS (2013) Impact of SiO2 and Mo nano particles on seed germination of rice (Oryza Sativa L.). Int J Agric Food Sci Technol 4(8):809–816

    Google Scholar 

  • Adrees M, Ali S, Rizwan M et al (2015) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197

    Article  CAS  PubMed  Google Scholar 

  • Agarie S, Hanaoka N, Ueno O, Miyazaki A, Kubota F, Agata W, Kaufman PB (1998) Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod Sci 1(2):96–103

    Article  Google Scholar 

  • Al-aghabary K, Zhu Z, Shi Q (2005) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J Plant Nutr 27:2101–2115

    Article  CAS  Google Scholar 

  • Ali A, Basra SM, Ahmad R, Wahid A (2009) Optimizing silicon application to improve salinity tolerance in wheat. Soil Environ 2:136–144

    Google Scholar 

  • Ali S, Farooq MA, Yasmeen T, Hussain S, Arif MS, Abbas F et al (2013) The influence of silicon on barley growth, photosynthesis and ultra-structure under chromium stress. Ecotoxicol Environ Saf 89:66–72

    Article  CAS  PubMed  Google Scholar 

  • Allahmoradi P, Ghobadi M, Taherabadi S, Taherabadi S (2011) Physiological aspects of Mung bean (Vigna radiata L.) in response to drought stress. In: International conference on food engineering and biotechnology, IPCBEE, vol 9, pp 272–275

  • Almutairi ZM (2016) Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (Solanum lycopersicum L.) seedlings under salt stress. POJ 9(1):106–114

    CAS  Google Scholar 

  • Alves AO, Santos MMB, Souza LJN, Souza EB, Mariano RLR (2015) Use of silicon for reducing the severity of bacterial wilt of sweet pepper. J Plant Pathol 97(3):419-429

    Google Scholar 

  • Amin M, Ahmad R, Basra SM, Murtaza G (2014) Silicon induced improvement in morpho-physiological traits of maize (Zea mays L.) under water deficit. Pak J Agric Sci 51:187–196

    Google Scholar 

  • Amirossadat Z, Ghehsareh AM, Mojiri A (2012) Impact of silicon on decreasing of salinity stress in greenhouse cucumber (Cucumis sativus L.) in soilless culture. J Biol Environ Sci 6(17):171–174

    Google Scholar 

  • Anwaar SA, Ali S, Ali S, Ishaque W, Farid M, Farooq MA, Najeeb U, Abbas F, Sharif M (2014) Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-014-3938-9

    Article  Google Scholar 

  • Arnon DI, Stout PR (1939) The essentiality of certain elements in minute quantity for plants, with special reference to copper. Plant Physiol 14:371–375. https://doi.org/10.1104/pp.14.2.371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asgharipour MR, Mosapour H (2016) A foliar application silicon enhances drought tolerance in fennel. J Anim Plant Sci 26(4):1056–1062

    CAS  Google Scholar 

  • Azeem S, Li Z, Zheng H, Lin W, Arafat Y, Zhang Z, Lin X, Lin W (2016) Quantitative proteomics study on Lsi1 in regulation of rice (Oryza sativa L.) cold resistance. Plant Growth Regul 78(3):307–323

    Article  CAS  Google Scholar 

  • Belanger RR, Benhamou N, Menzies JG (2003) Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sptritici). Phytopathology 93:402–412

    Article  CAS  PubMed  Google Scholar 

  • Bharwana SA, Ali S, Farooq MA, Iqbal N, Abbas F, Ahmad MSA (2013) Alleviation of lead toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. J Bioremediat Biodegrad 4:1–11

    Google Scholar 

  • Bokor B, Bokorova S, Ondos S, Svubova R, Lukacova Z, Hyblova M, Szemes T, Lux A (2014) Ionome and expression level of Si transporter genes (Lsi1, Lsi2, and Lsi6) affected by Zn and Si interaction in maize. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-014-3876-6

    Article  Google Scholar 

  • Botelho DMS, Pozza EA, Pozza AAA, Carvalho JG (2005) Effect of silicon doses and sources on the intensity of the brown eye spot of coffee seedlings. Fitopatologia Brasileira 30:582–588

    Article  Google Scholar 

  • Bradacova K, Weber NF, Morad-Talab N, Asim M, Imran M, Weinmann M, Neumann G (2016) Micronutrients (Zn/Mn), seaweed extracts, and plant growth-promoting bacteria as cold-stress protectants in maize. Chem Biol Technol Agric 3::19

    Article  CAS  Google Scholar 

  • Brenchley WE, Maskell EJ (1927) The inter-relation between silicon and other elements in plant nutrition. Ann Appl Biol 14:45–82

    Article  CAS  Google Scholar 

  • Broadley M, Brown P, Cakmak I, Ma JF, Rengel Z, Zhao F (2011) Beneficial elements. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Elsevier, Amsterdam, pp 257–261

    Google Scholar 

  • Bybordi A (2014) Interactive effects of silicon and potassium nitrate in improving salt tolerance of wheat. Int J Agric 13:1889–1899

    Article  CAS  Google Scholar 

  • Cai K, Gao D, Chen J, Luo S (2008) Probing the mechanisms of silicon-mediated pathogen resistance. Plant Signal Behav 4(1):1–3

    Article  Google Scholar 

  • Carre-Missio V, Rodrigues FA, Schurt DA, Rezende DC, Moreira WR, Korndorfer GH, Zambolim L (2012) Componentes epidemiologicos da ferrugem do cafeeiro afetadospela aplicaçao foliar de silicato de potássio. Trop Plant Pathol 37:50–56

    Article  Google Scholar 

  • Carre-Missio V, Rodrigues FA, Schur DA, Resende RS, Souza NFA, Rezende DC, Moreira WR, Zambolim L (2014) Effect of foliar-applied potassium silicate on coffee leaf infection by Hemileia vastatrix. Ann Appl Biol 164:396–403

    Article  CAS  Google Scholar 

  • Chen D, Yin L, Deng X, Wang S (2014) Silicon increases salt tolerance by influencing the two-phase growth response to salinity in wheat (Triticum aestivum L.). Acta Physiologiae Plantarum 36(9):2531–2535

    Article  CAS  Google Scholar 

  • Chen D, Cao B, Wang S, Liu P, Deng X, Yin L, Zhang S (2016) Silicon moderated the K deficiency by improving the plant-water status in sorghum. Sci Rep 6:22882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Wang S, Yin L, Deng X (2018) How does silicon mediate plant water uptake and loss under water deficiency? Front Plant Sci 9:281. https://doi.org/10.3389/fpls.2018.00281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiba Y, Mitani N, Yamaji N, Ma JF (2009) HvLsi1 is a silicon influx transporter in barley. Plant J 57:810–818

    Article  CAS  PubMed  Google Scholar 

  • Conceiçao CS, Felix KCS, Mariano RL, Medeiros EV, Souza EB (2014) Combined effect of yeast and silicon on the control of bacterial fruit blotch in melon. Sci Hortic 174:164–170

    Article  CAS  Google Scholar 

  • Cooke J, Leishman MR (2011) Is plant ecology more siliceous than we realise? Trends Plant Sci 16:61–68. https://doi.org/10.1016/j.tplants.2010.10.003

    Article  CAS  PubMed  Google Scholar 

  • Cornelis JT, Delvauz B, Georg RB, Lucas Y, Ranger J, Opfergelt S (2011) Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review. Biogeosciences 8:89–112

    Article  CAS  Google Scholar 

  • Correa RS, Moraes JC, Auad AM, Carvalho GA (2005) Silicon and acibenzolar-S-methyl as resistance inducers in cucumber, against the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype B. Neotrop Entomol 34(3):429–433

    Article  CAS  Google Scholar 

  • da Cunha KPV, do Nascimento CWA (2009) Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil. Water Air Soil Pollut 197:323–330

    Article  CAS  Google Scholar 

  • Dann EK, Muir S (2002) Peas grown in media with elevated plant-available silicon levels have higher activities of chitinase and β-1, 3-glucanase, are less susceptible to a fungal leaf spot pathogen and accumulate more foliar silicon. Australas Plant Pathol 31(1):9–13

    Article  Google Scholar 

  • Datnoff LE, Rodrigues FA (2005) The role of silicon in suppressing rice diseases. Am Phytopathol Soc. https://doi.org/10.1094/APSnetFeature-2005-0205

    Article  Google Scholar 

  • Datnoff LE, Deren CW, Snyder GH (1997) Silicon fertilization for disease management of rice in Florida. Crop Prot 16:525–531

    Article  CAS  Google Scholar 

  • de Camargo MS, Amorim L, Júnior ARG (2013) Silicon fertilization decreases brown rust incidence in sugarcane. Crop Prot 53:72–79. https://doi.org/10.1016/j.cropro.2013.06.006

    Article  CAS  Google Scholar 

  • de Souza PV, Machado BR, Zanuncio JC, Araújo MS, Alves GCS, de Jesus FG (2016) Cultivation of resistant soybean varieties and application of silicon (Si) on biology of ‘Euschistus heros’ (Hemiptera: Pentatomidae). Aust J Crop Sci 10(10):1404

    Article  CAS  Google Scholar 

  • Deshmukh RK, Vivancos J, Guérin V, Sonah H, Labbé C, Belzile F, Bélanger RR (2013) Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Mol Biol 83:303–315

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh RK, Vivancos J, Ramakrishnan G, Guérin V, Carpentier G, Sonah H et al (2015) A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants. Plant J 83:489–500. https://doi.org/10.1111/tpj.12904

    Article  CAS  PubMed  Google Scholar 

  • Ding TP, Ma GR, Shui MX, Wan DF, Li RH (2005) Silicon isotope study on rice plants from the Zhejiang province, China. Chem Geol 218:41–50

    Article  CAS  Google Scholar 

  • dos Santos MC, Junqueira AR, de Sá VM, Zanúncio JC, Serrão JE (2015) Effect of silicon on the morphology of the midgut and mandible of tomato leafminer Tuta absoluta (Lepidoptera: Gelechiidae) larvae. ISJ 12:158–165

    Google Scholar 

  • Emam MM, Khattab HE, Helal NM, Deraz AE (2014) Effect of selenium and silicon on yield quality of rice plant grown under drought stress. Aust J Crop Sci 8(4):596

    Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Biol 50(1):641–664

    Article  CAS  Google Scholar 

  • Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155:155–160. https://doi.org/10.1111/j.1744-7348.2009.00343.x

    Article  CAS  Google Scholar 

  • Exley C (2015) A possible mechanism of biological silicification in plants. Front Plant Sci 6:853. https://doi.org/10.3389/fpls.2015.00853

    Article  PubMed  PubMed Central  Google Scholar 

  • Farshidi M, Abdolzadeh A, Sadeghipour HR (2012) Silicon nutrition alleviates physiological disorders imposed by salinity in hydroponically grown canola (Brassica napus L.) plants. Acta Physiologiae Plantarum 34(5):1779–1788

    Article  CAS  Google Scholar 

  • Fauteux F, Rémus-Borel W, Menzies JG, Bélanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Fawe A, Abou-Zaid M, Menzies JG, Bélanger RR (1998) Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology 88(5):396–401

    Article  CAS  PubMed  Google Scholar 

  • Fawe A, Menzies JG, Chérif M, Bélanger RR (2001) Silicon and disease resistance in dicotyledons. Stud Plant Sci 8:159–169

    Article  CAS  Google Scholar 

  • Gao X, Zou C, Wang L, Zhang F (2006) Silicon decreases transpiration rate and conductance from stomata of maize plants. J Plant Nutr 29(9):1637–1647

    Article  CAS  Google Scholar 

  • Garg N, Bhandari P (2015) Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+ /Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regul. https://doi.org/10.1007/s10725-015-0099-x

    Article  Google Scholar 

  • Gérard F, François M, Ranger J (2002) Processes controlling silica concentration in leaching and capillary soil solutions of an acidic brown forest soil (Rhône, France). Geoderma 107:197–226

    Article  Google Scholar 

  • Ghareeb H, Bozso Z, Ott PG, Repenning C, Stahl F, Wydra K (2011) Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiol Mol Plant Pathol 75(3):83–89

    Article  CAS  Google Scholar 

  • Gong HJ, Chen KM (2012) The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta Physiol Plant 34:1589–1594

    Article  CAS  Google Scholar 

  • Grégoire C, Rémus-Borel W, Vivancos J, Labbé C, Belzile F, Bélanger RR (2012) Discovery of a multigene family of aquaporin silicon transporters in the primitive plant Equisetum arvense. Plant J 72:320–330

    Article  PubMed  CAS  Google Scholar 

  • Gu HH, Qiu H, Tian T, Zhan SS, Chaney RL, Wang SZ et al (2011) Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil. Chemosphere 83:1234–1240

    Article  CAS  PubMed  Google Scholar 

  • Gunes A, Pilbeam DJ, Inal A, Bagci EG, Coban S (2007) Influence of silicon on antioxidant mechanisms and lipid peroxidation in chickpea (Cicer arietinum L.) cultivars under drought stress. J Plant Interact 2:105–113

    Article  CAS  Google Scholar 

  • Gunes A, Pilbeam DJ, Inal A, Coban S (2008) Influence of silicon on sunflower cultivars under drought stress, I: growth, antioxidant mechanisms, and lipid peroxidation. Commun Soil Sci Plant Anal 39(13–14):1885–1903

    Article  CAS  Google Scholar 

  • Guntzer F, Keller C, Poulton PR, McGrath SP, Meunier JD (2012) Long term removal of wheat straw decreases soil amorphous silica at Broadbalk, Rothamsted. Plant Soil 352:173–184

    Article  CAS  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom. https://doi.org/10.1155/2014/701596

    Article  Google Scholar 

  • Gurmani AR, Bano A, Najeeb U, Zhang J, Khan SU, Flowers TJ (2013) Exogenous abscisic acid (ABA) and silicon (Si) promote salinity tolerance by reducing sodium (Na+) transport and bypass flow in rice (Oryza sativa indica). Aust J Crop Sci 7:1123–1130

    Google Scholar 

  • Gutierrez-Barranquero JA, Arrebola E, Bonilla N, Sarmiento D, Cazorla FM, de Vicente A (2012) Environmentally friendly treatment alternatives to Bordeaux mixture for controlling bacterial apical necrosis (BAN) of mango. Plant Pathol 61(4):665–676

    Article  CAS  Google Scholar 

  • Habibi G, Hajiboland R (2013) Alleviation of drought stress by silicon supplementation in pistachio (Pistacia vera L.) plants. Folia Hortic 25(1):21–29

    Article  Google Scholar 

  • Hameed A, Sheikh MA, Jamil A, Basra SMA (2013) Seed priming with sodium silicate enhances seed germination and seedling growth in wheat (Triticum aestivum L.) under water deficit stress induced by polyethylene glycol. Pak J Life Soc Sci 11:19–24

    Google Scholar 

  • Han Y, Li P, Gong S, Yang L, Wen L, Hou M (2015) Defense responses in rice induced by silicon amendment against infestation by the leaf folder Cnaphalocrocis medinalis. PLoS One 11(4):e0153918

    Article  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • He W, Yang M, Li Z, Qiu J, Liu F, Qu X, Qiu Y, Li R (2015) High levels of silicon provided as a nutrient in hydroponic culture enhances rice plant resistance to brown planthopper. Crop Prot 67:20–25

    Article  CAS  Google Scholar 

  • Heaney PJ, Prewitt CT, Gibbs GV (eds) (1994) Silica: physical behavior, geochemistry and materials applications. In: Reviews in mineralogy, vol 29. Mineralogical Society of America

  • Henriet C, Bodarwe L, Dorel M, Draye X, Delvaux B (2008) Leaf silicon content in banana (Musa spp.) reveals the weathering stage of volcanic ash soils in Guadeloupe. Plant Soil 313:71–82

    Article  CAS  Google Scholar 

  • Hodson M, White P, Mead A, Broadley M (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96:1027–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussein MM, Abou-Baker NH (2014) Growth and mineral status of Moringa plants as affected by silicate and salicylic acid under salt stress. Int J Plant Soil Sci 3(2):163–177

    Article  Google Scholar 

  • Iwasaki K, Maier P, Fecht M, Horst WJ (2002) Leaf apoplastic silicon enhances manganese tolerance of cow-pea (Vigna unguiculata). J Plant Physiol 159(2):167–173

    Article  CAS  Google Scholar 

  • Jayawardana HARK, Weerahewa HLD, Saparamadu MDJS (2014) Effect of root or foliar application of soluble silicon on plant growth, fruit quality and anthracnose development of capsicum. Trop Agric Res 26(1):74–81

    Article  Google Scholar 

  • Jia-Wen WU, Yu SHI, Yong-Xing ZHU, Yi-Chao WANG, Hai-Jun GONG (2013) Mechanisms of enhanced heavy metal tolerance in plants by silicon: a review. Pedosphere 23(6):815–825

    Article  Google Scholar 

  • Jones LHP, Handreck KA (1967) Silica in soils, plants, and animals. Adv Agron 19:107–149

    Article  CAS  Google Scholar 

  • Kalteh M, Alipour ZT, Ashraf S, Aliabadi MM, Nosratabadi AF (2014) Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem Health Risk 4(3):49–55

    CAS  Google Scholar 

  • Kardoni F, Mosavi SJS, Parande S, Torbaghan ME (2013) Effect of salinity stress and silicon application on yield and component yield of faba bean (Vicia faba). Int J Agric Crop Sci 6(12):814

    CAS  Google Scholar 

  • Keeping MG, Kvedaras OL, Bruton AG (2009) Epidermal silicon in sugarcane: cultivar differences and role in resistance to sugarcane borer Eldana saccharina. Environ Exp Bot 66(1):54–60

    Article  CAS  Google Scholar 

  • Keeping MG, Meyer JH, Sewpersad C (2013) Soil silicon amendments increase resistance of sugarcane to stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae) under field conditions. Plant Soil 363(1–2):297–318

    Article  CAS  Google Scholar 

  • Keller C, Rizwan M, Davidian JC, Pokrovsky OS, Bovet N, Chaurand P, Meunier JD (2015) Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu. Planta 241:847–860

    Article  CAS  PubMed  Google Scholar 

  • Khattab HI, Emam MA, Emam MM, Helal NM, Mohamed MR (2014) Effect of selenium and silicon on transcription factors NAC5 and DREB2A involved in drought-responsive gene expression in rice. Biologia Plantarum 58(2):265–273

    Article  CAS  Google Scholar 

  • Kim SG, Kim KW, Park EW, Choi D (2002) Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology 92:1095–1103

    Article  PubMed  Google Scholar 

  • Kim YH, Khan AL, Waqas M, Shim JK, Kim DH, Lee KY, Lee IJ (2014a) Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. J Plant Growth Regul 33:137–149

    Article  CAS  Google Scholar 

  • Kim YH, Khan AL, Kim DH, Lee SY, Kim KM, Waqas M et al (2014b) Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol 14:13. https://doi.org/10.1186/1471-2229-14-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight CTG, Kinrade SD (2001) A primer on the aqueous chemistry of silicon. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture, studies in plant science, vol 8. Elsevier, Amsterdam, pp 57–84

    Chapter  Google Scholar 

  • Kurabachew H, Stahl F, Wydra K (2013) Global gene expression of rhizobacteria-silicon mediated induced systemic resistance in tomato (Solanum lycopersicum) against Ralstonia solanacearum. Physiol Mol Plant Pathol 84:44–52

    Article  CAS  Google Scholar 

  • Lee SK, Sohn EY, Hamayun M, Yoon JY, Lee IJ (2010) Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agrofor Syst 80:333–340

    Article  Google Scholar 

  • Li H, Zhu Y, Hu Y, Han W, Gong H (2015) Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiol Plant 37(4):1–9

    Article  CAS  Google Scholar 

  • Liang YC, Si J, Römheld V (2005a) Silicon uptake and transport is an active process in Cucumis sativus. N Phytol 167:797–804

    Article  CAS  Google Scholar 

  • Liang YC, Sun WC, Si J, Romheld V (2005b) Effects of foliar-and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathol 54(5):678–685

    Article  CAS  Google Scholar 

  • Liang Y, Sun W, Zhu Y-G, Christie P (2007) Mechanisms of silicon mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428. https://doi.org/10.1016/j.envpol.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Nikolic M, Bélanger R, Gong H, Song A (2015) Silicon in agriculture: from theory to practice. Springer, Dordrecht

    Book  Google Scholar 

  • Liu M, Cai K, Chen Y, Luo S, Zhang Z, Lin W (2014) Proteomic analysis of silicon mediated resistance to Magnaporthe oryzae in rice (Oryza sativa L.). Eur J Plant Pathol 139(3):579–592

    Article  CAS  Google Scholar 

  • Lu G, Jian W, Zhang J, Zhou Y, Cao J (2008) Suppressive effect of silicon nutrient on Phomopsis stem blight development in asparagus. Hort Sci 43(3):811–817

    Google Scholar 

  • Lukacova Z, Svubova R, Kohanova J, Lux A (2013) Silicon mitigates the Cd toxicity in maize in relation to cadmium translocation, cell distribution, antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier development. Plant Growth Regul 70:89–103

    Article  CAS  Google Scholar 

  • Lux A, Luxova M, Abe J, Tanimoto E, Taiichiro H, Shinobu I (2003) The dynamics of silicon deposition in the sorghum root endodermis. N Phythol 158:437–441

    Article  CAS  Google Scholar 

  • Luyckx M, Hausman J-F, Lutts S, Guerriero G (2017) Silicon and plants: current knowledge and technological perspectives. Front Plant Sci 8:411. https://doi.org/10.3389/fpls.2017.0041

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18

    Article  CAS  Google Scholar 

  • Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier, Amsterdam

    Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11(8):392–397

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N (2015) A cooperative system of silicon transport in plants. Trends Plant Sci 20:435–442. https://doi.org/10.1016/j.tplants.2015.04.007

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Miyake Y, Takahashi E (2001) Silicon as a beneficial element for crop plants. In: Datnoff LE, Snyder GH, Korndorfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 17–39

    Chapter  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani M, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani-Ueno N (2011) Transport of silicon from roots to panicles in plants. Jpn Acad Ser B 87:377–385

    Article  CAS  Google Scholar 

  • Ma J, Sheng H, Li X, Wang L (2016) iTRAQ-based proteomic analysis reveals the mechanisms of silicon-mediated cadmium tolerance in rice (Oryza sativa) cells. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2016.03.024

    Article  PubMed  Google Scholar 

  • Maghsoudi K, Emam Y, Ashraf M (2016) Foliar application of silicon at different growth stages alters growth and yield of selected wheat cultivars. J Plant Nutr 39(8):1194–1203

    Article  CAS  Google Scholar 

  • Mahdieh M, Habibollahi N, Amirjani MR, Abnosi MH, Ghorbanpour M (2015) Exogenous silicon nutrition ameliorates salt-induced stress by improving growth and efficiency of PSII in Oryza sativa L. cultivars. J Soil Sci Plant Nutr 15(4):1050–1060

    CAS  Google Scholar 

  • Maksimovic JD, Mojovic M, Maksimovic V, Romheld V, Nikolic M (2012) Silicon ameliorates manganese toxicity in cucumber by decreasing hydroxyl radical accumulation in the leaf apoplast. J Exp Bot 63:2411–2420

    Article  PubMed  CAS  Google Scholar 

  • Malcovska SM, Ducaiova Z, Maslanakova I, Backor M (2014) Effect of silicon on growth, photosynthesis, oxidative status and phenolic compounds of maize (Zea mays L.) grown in cadmium excess. Water Air Soil Pollut 225(8):2056

    Article  CAS  Google Scholar 

  • Malhotra CH, Kapoor R, Ganjewala D (2016) Alleviation of abiotic and biotic stresses in plants by silicon supplementation. Scientia 13(2):59–73

    CAS  Google Scholar 

  • Manivannan A, Soundararajan P, Muneer S, Ko CH, Jeong BR (2016) Silicon mitigates salinity stress by regulating the physiology, antioxidant enzyme activities, and protein expression in Capsicum annuum ‘Bugwang’. Bio Med Res Int. https://doi.org/10.1155/2016/3076357

    Article  Google Scholar 

  • Marxen A, Klotzbucher T, Jahn R, Kaiser K, Nguyen VS, Schmidt A, Schadler M, Vetterlein D (2015) Interaction between silicon cycling and straw decomposition in a silicon deficient rice production system. Plant Soil. https://doi.org/10.1007/s11104-015-2645-8

    Article  Google Scholar 

  • Mateos-Naranjo E, Andrades-Moreno L, Davy AJ (2013) Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora. Plant Physiol Biochem 63:115–121

    Article  CAS  PubMed  Google Scholar 

  • Maxim LD, Niebo R, La Rosa S, Johnston B, Allison K, McConnell EE (2008) Product stewardship in wollastonite production. Inhal Toxicol 20:1199–1214

    Article  CAS  PubMed  Google Scholar 

  • Milne CJ, Laubscher CP, Ndakidemi PA, Marnewick JL, Rautenbach F (2012) Salinity induced changes in oxidative stress and antioxidant status as affected by applications of silicon in lettuce (Lactuca sativa). Int J Agric Biol 14(5):763–768

    CAS  Google Scholar 

  • Ming DF, Pei ZF, Naeem MS, Gong HJ, Zhou WJ (2012) Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment. J Agron Crop Sci 198:14–26

    Article  CAS  Google Scholar 

  • Mitani N, Chiba Y, Yamaji N, Ma JF (2009a) Identification and characterization of maize and barley Lsi-2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell 21:2133–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitani N, Yamaji N, Ma JF (2009b) Identification of maize silicon influx transporters. Plant Cell Physiol 50:5–12

    Article  CAS  PubMed  Google Scholar 

  • Mitani N, Yamaji N, Ago Y, Iwasaki K, Ma JF (2011) Isolation and functional characterisation of silicon transporter in two Pumpkin cultivars contrasting in silicon accumulation. Plant J 66:231–240

    Article  CAS  PubMed  Google Scholar 

  • Mitani-Ueno N, Yamaji N, Ma JF (2011) Silicon efflux transporters isolated from two pumpkin cultivars contrasting in Si uptake. Plant Signal Behav 6:991–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyake Y, Takahashi E (1982a) Effect of silicon on the growth of solution-cultured cucumber plants, Part 17. Comparative studies on silica nutrition in plants. Jpn J Soil Sci Plant Nutr 53:23–29

    CAS  Google Scholar 

  • Miyake Y, Takahashi E (1982b) Effect of silicon on the growth of solution-cultured cucumber plants, Part 16. Comparative studies on silica nutrition in plants. Jpn J Soil Sci Plant Nutr 53:15–22

    CAS  Google Scholar 

  • Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165

    Article  Google Scholar 

  • Montpetit J, Vivancos J, Mitani-Ueno N, Yamaji N, Rémus-Borel W, Belzile F, Ma JF, Bélanger RR (2012) Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Mol Biol 79:35–46

    Article  CAS  PubMed  Google Scholar 

  • Muneer S, Jeong BR (2015) Proteomic analysis of salt-stress responsive proteins in roots of tomato (Lycopersicon esculentum L.) plants towards silicon efficiency. Plant Growth Regul. https://doi.org/10.1007/s10725-015-0045-y

    Article  Google Scholar 

  • Muneer S, Park YG, Manivannan A, Soundararajan P, Jeong BR (2014) Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress. Int J Mol Sci 15:21803–21824. https://doi.org/10.3390/ijms151221803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nascimento AM, Assis FA, Moraes JC, Sakomura R (2014) Nãopreferencia a Spodopterafrugiperda (Lepidoptera: Noctuidae) induzi daemarrozpelaaplicaçao de silício. Braz J Agric Sci Revista Brasileira de Ciencias Agrarias 9(2):215–218.

    Article  Google Scholar 

  • Neocleous D (2015) Grafting and silicon improve photosynthesis and nitrate absorption in melon (Cucumis melo L.) plants. J Agric Sci Technol 17:1815–1824

    Google Scholar 

  • Nikolic M, Nikolic N, Liang Y, Kirkby EA, Romheld V (2007) Germanium-68 as an adequate tracer for silicon transport in plants. Characterization of silicon uptake in different crop species. Plant Physiol 143:495–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norton LD, Hall GE, Smeck NE, Bigham JM (1984) Fraginap bonding in a late-Wisconsian loss-derived soil in East-Central Ohio. Soil Sci Soc Am J 48:1360

    Article  CAS  Google Scholar 

  • Parthasarathy S, Jaiganesh V (2016) Plant activator and silicon nutrient mediated resistance against powdery mildew of Black gram (Vigna mungo L. Hepper). Glob J Res Anal 4(6):48–49

    Google Scholar 

  • Paula LS, Silva BC, Pinho WCS, Barbosa MAM, Guedes Lobato EMS, Batista BL, Barbosa F Jr, Lobato AKS (2015) Silicon (Si) ameliorates the gas exchange and reduces negative impacts on photosynthetic pigments in maize plants under zinc (Zn) toxicity. Aust J Crop Sci 9:901–908

    CAS  Google Scholar 

  • Pereira HS, Korndorfer GH, Moura WF, Correa GF (2003) Extractors of available silicon in slags and fertilizers. Revista Brasileira de Cienciado Solo 27:265–274

    Article  CAS  Google Scholar 

  • Pozza AAA, Alves E, Pozza EA, Carvalho JG, Montanari M, Guimaraes PTG, Santos DM (2004) Effect of silicon on the control of brown eye spot in three coffee cultivars. Fitopatologia Brasileira 29:185–188

    Article  Google Scholar 

  • Putra ETS, Purwanto BH (2015) Physiological responses of oil palm seedlings to the drought stress using boron and silicon applications. J Agron 14(2):49

    Article  CAS  Google Scholar 

  • Rao SDV (1967) Hardness of sugarcane varieties in relation to shoot borer infestation. Andhra Agric J 14:99–105

    Google Scholar 

  • Raven JA (2001) Silicon transport at the cell and tissue level. In: Datnoff LE, Snyder GH, Korndorfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 41–55

    Chapter  Google Scholar 

  • Raven JA (2003) Cycling silicon–the role of accumulation in plants. New Phytol 158:419–421

    Article  Google Scholar 

  • Reis THP, Figueiredo FC, Guimaraes PTG, Botrel PP, Rodrigues CR (2008) Efeito da associaçaosilíciolíquidosoluvel com fungicida no controlefitossanitário do cafeeiro. Coffee Sci 3:76–80

    Google Scholar 

  • Resende RS, Rodrigues F, Costa RV, Silva DD (2013) Silicon and fungicide effects on anthracnose in moderately resistant and susceptible sorghum lines. J Phytopathol 161(1):11–17

    Article  CAS  Google Scholar 

  • Richmond KE, Sussman M (2003) Got silicon? The non-essential beneficial plant nutrient. Curr Opin Plant Biol 6:268–272

    Article  CAS  PubMed  Google Scholar 

  • Rizwan M, Meunier JD, Miche H, Keller C (2012) Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. J Hazard Mater 209–210:326–334

    Article  PubMed  CAS  Google Scholar 

  • Rizwan M, Ali S, Ibrahim M, Farid M, Adrees M, Bharwana SA et al (2015) Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. Environ Sci Pollut Res 22:15416–15431. https://doi.org/10.1007/s11356-015-5305-x

    Article  CAS  Google Scholar 

  • Rodrigues FA, McNally DJ, Datnoff LE, Jones JB, Labbé C, Benhamou N, Menzies JG, Bélanger RR (2004) Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology 94:177–183

    Article  CAS  PubMed  Google Scholar 

  • Rohanipoor A, Norouzi M, Moezzi A, Hassibi P (2013) Effect of silicon on some physiological properties of maize (Zea mays) under salt stress. J Biol Environ Sci 7:71–79

    Google Scholar 

  • Sabaghnia N, Janmohammadi M (2014) Graphic analysis of nano-silicon by salinity stress interaction on germination properties of lentil using the biplot method. Agr For 60(3):29–40

    Google Scholar 

  • Sachs JV (1860) Vegetations versuchemitausschluss des bodensüber die nährstoffe und sonstigenernährungsbedingungen von mais, bohnen, und anderenpflanzen. Landw Versuchsst 2:219–268

    Google Scholar 

  • Sahebi M, Hanafi MM, Siti Nor Akmar A, Rafii MY, Azizi P, Tengoua FF, NurulMayzaitulAzwa J, Shabanimofrad M (2015) Importance of silicon and mechanisms of biosilica formation in plants. BioMed Res Int. https://doi.org/10.1155/2015/396010

    Article  PubMed  PubMed Central  Google Scholar 

  • Salim M, Saxena RC (1992) Iron, silica, and aluminum stresses and varietal resistance in rice: effects on white backed plant hopper. Crop Sci 32:212–219

    Article  CAS  Google Scholar 

  • Samuels AL, Glass ADM, Ehret DL, Menzies JG (1991) Mobility and deposition of silicon in cucumber plants. Plant Cell Environ 14(5):485–492

    Article  Google Scholar 

  • Saud S, Li X, Chen Y, Zhang L, Fahad S, Hussain S, Chen Y (2014) Silicon application increases drought tolerance of Kentucky bluegrass by improving plant water relations and morphophysiological functions. Sci World J. https://doi.org/10.1155/2014/368694

    Article  Google Scholar 

  • Shen X, Zhou Y, Duan L, Li Z, Eneji AE, Li J (2010) Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J Plant Physiol 167:1248–1252

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Xiao X, Dong Z, Chen Y (2014) Silicon effects on antioxidative enzymes and lipid peroxidation in leaves and roots of peanut under aluminum stress. Acta Physiol Plant 36:3063–3069

    Article  CAS  Google Scholar 

  • Shi X, Zhang C, Wang H, Zhang F (2005) Effect of Si on the distribution of Cd in rice seedlings. Plant Soil 272(1):53–60

    Article  CAS  Google Scholar 

  • Shi Y, Zhang Y, Yao H, Wu J, Sun H, Gong H (2014) Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiol Biochem 78:27–36

    Article  CAS  PubMed  Google Scholar 

  • Shivaraj S, Deshmukh RK, Rai R, Bélanger R, Agrawal PK, Dash PK (2017) Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum). Sci Rep 7:46137. https://doi.org/10.1038/srep46137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21(1):13–17

    Article  CAS  PubMed  Google Scholar 

  • Sidhu JK, Stout MJ, Blouin DC, Datnoff LE (2013) Effect of silicon soil amendment on performance of sugarcane borer, Diatraea saccharalis (Lepidoptera: Crambidae) on rice. Bull Entomol Res 103(06):656–664

    Article  CAS  PubMed  Google Scholar 

  • Silva RV, Oliveria RDL, Nascimento KJT, Rodrigues FA (2010) Biochemical responses of coffee resistance against Meloidogyne exigua mediated by silicon. Plant Pathol 59:586–593

    Article  CAS  Google Scholar 

  • Silva ON, Lobato AKS, Ávila FW et al (2012) Silicon-induced increase in chlorophyll is modulated by the leaf water potential in two water-deficient tomato cultivars. Plant Soil Environ 58:481–486

    Article  CAS  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2015) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    PubMed  Google Scholar 

  • Somapala K, Weerahewa D, Thrikawala S (2016) Silicon rich rice hull amended soil enhances anthracnose resistance in tomato. Proc Food Sci 6:190–193

    Article  Google Scholar 

  • Sonah H, Deshmukh R, Labbé C, Belanger R (2017) Analysis of aquaporins in Brassicaceae species reveals high-level of conservation and dynamic role against biotic and abiotic stress in canola. Sci Rep. https://doi.org/10.1038/s41598-017-02877-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Song A, Li P, Fan F, Li Z, Liang Y (2014) The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS One 9(11):e113782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Souza ACA, Sousa TP, Cortes MVB, Rodrigues F, Silva GB, Filippi MCC (2015) Enzyme-induced defense response in the suppression of rice leaf blast (Magnaporthe oryzae) by silicon fertilization and bioagents. Int J Res Stud Biosci 3:22–32

    Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012) Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Curr Nano sci 8(6):902–908

    Article  CAS  Google Scholar 

  • Swain BN, Prasad JS (1988) Influence of silica content in the roots of rice varieties on the resistance to root-knot nematodes. Indian J Nematol 18:360–361

    Google Scholar 

  • Tahir MA, Aziz T, Farooq M, Sarwar G (2012) Silicon-induced changes in growth, ionic composition, water relations, chlorophyll contents and membrane permeability in two salt-stressed wheat genotypes. Archi Agron Soil Sci 58(3):247–256

    Article  CAS  Google Scholar 

  • Takahashi E, Ma JF, Miyake Y (1990) The possibility of silicon as an essential element for higher plants. Comments Agric Food Chem 2:99–122

    CAS  Google Scholar 

  • Tale Ahmad S, Haddad R (2011) Study of silicon effects on antioxidant enzyme activities and osmotic adjustment of wheat under drought stress. Czech J Genet Plant Breed 47(1):17–27

    Article  CAS  Google Scholar 

  • Tripathi P, Tripathi RD, Singh RP, Dwivedi S, Goutam D, Shri M, Trivedi PK, Chakrabarty D (2013) Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defense system. Ecol Eng 52:96–103

    Article  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK, Rai AK (2015) Silicon-mediated alleviation of Cr (VI) toxicity in wheat seedlings as evidenced by chlorophyll florescence, laser induced breakdown spectroscopy and anatomical changes. Ecotoxicol Environ Saf 113:133–144

    Article  CAS  PubMed  Google Scholar 

  • Tubana BS, Heckman JR (2015) Silicon in soils and plants. In Rodrigue FA, Datnoff LE (eds), Silicon and plant diseases. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-22930-0$42

    Chapter  Google Scholar 

  • Vaculík M, Landberg T, Greger M, Luxová M, Stoláriková M, Lux A (2012) Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Ann Bot 110:433–443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Bockhaven J, De Vleesschauwer D, Hofte M (2013) Towards establishing broad spectrum disease resistance in plants: silicon leads the way. J Exp Bot 64:1281–1293. https://doi.org/10.1093/jxb/ers329

    Article  CAS  PubMed  Google Scholar 

  • Vanderschuren H, Boycheva S, Li KT, Szydlowski N, Gruissem W, Fitzpatrick TB (2013) Strategies for vitamin B6 biofortification of plants: a dual role as a micronutrient and a stress protectant. Front Plant Sci 4:143

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasanthi N, Saleena LM, Raj SA (2012a) Silicon in day today life. World Appl Sci J 17:1425–1440

    CAS  Google Scholar 

  • Vasanthi N, Chandrasekeran D, Raj SA (2012b) Phytosil as an alternative carrier to talc for biocontrol agents. In: Proc. Natl. Symp. Recent Adv. Bioinoculatns Techn. Agricultural College & Research Institute, Madurai

    Google Scholar 

  • Vatehova Z, Kollarova K, Zelko I, Richterova-Kucerova D, Bujdos M, Liskova D (2012) Interaction of silicon and cadmium in Brassica juncea and Brassica napus. Biologia 67(3):498–504

    Article  CAS  Google Scholar 

  • Vilela M, Moraes JC, Alves E, Santos-Cividanes TM, Santos FA (2014) Induced resistance to Diatraeasaccharalis (Lepidoptera: Crambidae) via silicon application in sugarcane. Revista Colombiana de Entomología 40(1):44–48

    CAS  Google Scholar 

  • Virta RL (2004) Wollastonite—U.S. geological survey. Miner Yearb 82:1–3

    Google Scholar 

  • Vivancos J, Deshmukh R, Grégoire C, Rémus-Borel W, Belzile F, Bélanger RR (2016) Identification and characterization of silicon efflux transporters in horsetail (Equisetum arvense). J Plant Physiol 200:82–89

    Article  CAS  PubMed  Google Scholar 

  • Wang LJ, Guo ZM, Li TJ, Li M (2001) The nano structure SiO2 in the plants. Chin Sci Bull 46:625–631

    Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wei Z, Liu D, Zhao G (2011) Effects of NaCl and silicon on activities of antioxidative enzymes in roots, shoots and leaves of alfalfa. Afr J Biotechnol 10:545–549

    CAS  Google Scholar 

  • Wang HS, Yu C, Fan P-P, Bao B-F, Li T, Zhu Z-J (2014) Identification of two cucumber putative silicon transporter genes in Cucumis sativus. J Plant Growth Regul 34(2):332–338

    Article  CAS  Google Scholar 

  • White AF, Brantley SL (eds) (1995) Chemical weathering rates of silicate minerals. In: Reviews in mineralogy, vol 31, Mineralogical Society of America

  • Williams LA, Crerar DA (1985) Silica diagenesis. II. General mechanisms. J Sediment Petrol 55:312–321

    Google Scholar 

  • Xie Z, Song R, Shao H, Song F, Xu H, Lu Y (2015) Silicon improves maize photosynthesis in saline-alkaline soils. Sci World J 2015:245072

    Article  CAS  Google Scholar 

  • Xue GF, Sun WC, Song AL, Li ZJ, Fan FL, Liang YC (2010) Influence of silicon on rice growth, resistance to bacterial blight and activity of pathogenesis-related proteins. China Agric Sci 43(4):690–697

    CAS  Google Scholar 

  • Yamaji N, Ma JF (2007) Spatial distribution and temporal variation of the rice silicon transporter Lsi1. Plant Physiol 143:1306–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaji N, Ma JF (2009) Silicon transporter Lsi6 at the node is responsible for inter-vascular transfer of silicon in rice. Plant Cell 21:2878–2883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaji N, Ma JF (2011) Further characterization of a rice Si efflux transporter, Lsi2. Soil Sci Plant Nutr 57:259–564

    Article  CAS  Google Scholar 

  • Yamaji N, Mitatni N, Ma JF (2008) A transporter regulating silicon distribution in rice shoots. Plant Cell 20:1381–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaji N, Mitani-Ueno N, Ma JF (2011) Transporters involved in preferential distribution of Si to the panicles at the node in rice. In: Proceedings, the 5th international conference on silicon in agriculture; September 13–18, Beijing, China, p 210

  • Yamaji N, Chiba Y, Mitani-Ueno N, Ma JF (2012) Functional characterization of a silicon transporter gene implicated in silicon distribution in barley. Plant Physiol 160:1491–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YF, Liang YC, Lou YS, Sun WC (2003) Influences of silicon on peroxidase, superoxide dismutase activity and lignin content in leaves of wheat (Tritium aestivum L.) and its relation to resistance to powdery mildew. Scientia Agricultura Sinica 7:013

    Google Scholar 

  • Yao X, Chu J, Cai K, Liu L, Shi J, Geng W (2011) Silicon improves the tolerance of wheat seedlings to ultraviolet-B stress. Biol Trace Elem Res 143(1):507–517

    Article  CAS  PubMed  Google Scholar 

  • Ye M, Song Y, Long J, Wang R, Baerson SR, Pan Z et al (2013) Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proc Natl Acad Sci USA 110:E3631–E3639 https://doi.org/10.1073/pnas.1305848110

    Article  PubMed  Google Scholar 

  • Yin L, Wang S, Li J, Tanaka K, Oka M (2013) Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiologiae Plantarum 35(11):3099–3107

    Article  CAS  Google Scholar 

  • Yin L, Wang S, Liu P, Wang W, Cao D, Deng X, Zhang S (2014) Silicon mediated changes in polyamine and 1-aminocyclopropane-1- carboxylic acid are involved in silicon-induced drought resistance in Sorghum bicolor L. Plant Physiol Biochem 80:268–277

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Wang S, Tanaka K, Fujihara S, Itai A, Den X, Zhang S (2015) Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L. Plant Cell Environ. https://doi.org/10.1111/pce.12521

    Article  PubMed  Google Scholar 

  • Zargar SM, Agnihotri A (2013) Impact of silicon on various agromorphological and physiological parameters in maize and revealing its role in enhancing water stress tolerance. Emir J Food Agric 25:138–141

    Article  Google Scholar 

  • Zargar SM, Nazir M, Agrawal GK, Kim D, Rakwal R (2010) Silicon in plant tolerance against environmental stressors: towards crop improvement using omics approaches. Curr Proteomics 7:135–143

    Article  CAS  Google Scholar 

  • Zargar SM, Macha MA, Nazir M, Agrawal GK, Rakwal R (2012) Silicon: a multitalented micronutrient in OMICS perspective—an update. Curr Proteomics 9:245–254

    Article  CAS  Google Scholar 

  • Zhang GL, Dai QG, Zhang HC (2006) Silicon application enhances resistance to sheath blight (Rhizoctonia solani) in rice. J Plant Physiol Mol Biol 32(5):600–606

    CAS  Google Scholar 

  • Zhang C, Wang L, Nie Q, Zhang W, Zhang F (2008) Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). Environ Exp Bot 62:300–307

    Article  CAS  Google Scholar 

  • Zhang SR, Li SY, Ding X, Li F, Liu C, Liao X et al (2013) Silicon mediated the detoxification of Cr on pakchoi (Brassica chinensis L.) in Cr-contaminated soil. Int J Food Agric Environ 11:814–819

    CAS  Google Scholar 

  • Zhu YX, Xu XB, Hu YH, Han WH, Yin JL, Li HL, Gong HJ (2015) Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L. Plant Cell Rep. https://doi.org/10.1007/s00299-015-1814-9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sajad Majeed Zargar or Rupesh Deshmukh.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zargar, S.M., Mahajan, R., Bhat, J.A. et al. Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. 3 Biotech 9, 73 (2019). https://doi.org/10.1007/s13205-019-1613-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1613-z

Keywords

Navigation