The draft genome sequence of Clostridium sp. strain CT7, an isolate capable of producing butanol but not acetone and 1,3-propanediol from crude glycerol

Abstract

A solventogenic Clostridium sp. strain CT7 which could utilize glycerol directly to produce high yields of butanol was isolated. In the presence of crude glycerol, strain CT7 synthesized butanol through a unique butanol–ethanol (BE) fermentation pathway in which acetone and 1,3-propanediol (1,3-PDO) were not produced. The genome of strain CT7 which has a G + C content of 30.3% was estimated to be 5.99 Mb and contained 4319 putative Open Reading Frames (ORF). The putative annotated genes, which play major roles in BE production from crude glycerol, included glycerol dehydrogenase gene (gdh), acetoacetyl-CoA transferase gene (ctfA/B), and bifunctional alcohol and aldehyde dehydrogenase gene (adhE). In addition, non-typical BE production is not coupled to 1,3-propanediol formation, which may due to the defect of 1, 3-PDO dehydrogenase gene (dhaT).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Bhandiwad A, Guseva A, Lynd L (2013) Metabolic engineering of Thermoanaerobacterium thermosaccharolyticum for increased n-butanol production. Adv Microbiol 3:46

    CAS  Article  Google Scholar 

  2. Delcher AL, Bratke KA, Powers EC (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679

    CAS  Article  Google Scholar 

  3. Huang D, Wang R, Du W, Wang G, Xia M (2015) Activation of glycerol metabolic pathway by evolutionary engineering of Rhizopus oryzae, to strengthen the fumaric acid biosynthesis from crude glycerol. Bioresour Technol 196:263–272

    CAS  Article  Google Scholar 

  4. Jiang Y, Xu C, Dong F, Yang Y, Jiang W, Yang S (2009) Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab Eng 11:284–291

    CAS  Article  Google Scholar 

  5. Jiang Y, Liu J, Dong W, Zhang W, Fang Y, Ma J, Jiang M, Xin F (2017) The draft genome sequence of Thermophilic Thermoanaerobacterium thermosaccharolyticum M5 capable of directly producing butanol from hemicellulose. Curr Microbiol 15:1–4

    Google Scholar 

  6. Jiang Y, Zhang T, Lu JS, Dürre P, Zhang WM, Dong WL, Zhou J, Jiang M, Xin FX (2018) Microbial co-culturing systems: butanol production from organic wastes through consolidated bioprocessing. Appl Microbiol Biot 102:5419–5425

    CAS  Article  Google Scholar 

  7. Jiménez-Bonilla P, Wang Y (2017) In situ biobutanol recovery from clostridial fermentations: a critical review. Crit Rev in Biotechnol 38:1–14

    Google Scholar 

  8. Lee S, Park J, Jang S, Nielsen L, Kim J, Jung K (2010) Fermentative butanol production by clostridia. Biotechnol Bioeng 101:209–228

    Article  Google Scholar 

  9. Lo J, Zheng T, Hon S, Olson DG, Lynd LR (2015) The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is necessary for ethanol production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. J Bacteriol 197:1386–1393

    CAS  Article  Google Scholar 

  10. Millat T, Voigt C, Janssen H (2014) Coenzyme A-transferase-independent butyrate re-assimilation in Clostridium acetobutylicum—evidence from a mathematical model. Appl Microbiol biot 98:9059–9072

    CAS  Article  Google Scholar 

  11. Sarchami T, Rehmann L (2014) Optimizing enzymatic hydrolysis of inulin from Jerusalem artichoke tubers for fermentative butanol production. Biomass Bioenerg 69:175–182

    CAS  Article  Google Scholar 

  12. Sarchami T, Munch G, Johnson E, Kieblich S, Rehmann L (2016) A review of process-design challenges for industrial fermentation of butanol from crude glycerol by non-biphasic Clostridium pasteurianum. Fermentation 2:2

    Article  Google Scholar 

  13. Sedlar K, Kolek J, Skutkova H, Branska B, Provaznik I, Patakova P (2015) Complete genome sequence of Clostridium pasteurianum NRRL B-598, a non-type strain producing butanol. J Biotechnol 214:113–114

    CAS  Article  Google Scholar 

  14. Shanmugam S, Hari A, Ulaganathan P, Yang F, Krishnaswamy S, Wu YR (2018a) Potential of biohydrogen generation using the delignified lignocellulosic biomass by a newly identified thermostable laccase from Trichoderma asperellum strain BPLMBT1. Int J Hydrog Energy 43:361–3628

    Article  Google Scholar 

  15. Shanmugam S, Sun C, Zeng X, Wu YR (2018b) High-efficient production of biobutanol by a novel Clostridium sp. strain WST with uncontrolled pH strategy. Bioresour Technol 256:543–547

    CAS  Article  Google Scholar 

  16. Sun C, Zhang S, Xin FX, Shanmugam S, Wu YR (2018) Genomic comparison of Clostridium species with the potential of utilizing red algal biomass for biobutanol production. Biotechnol Biofuels 11(1):42

    Article  Google Scholar 

  17. Taconi KA, Venkataramanan KP, Johnson DT (2009) Growth and solvent production by Clostridium pasteurianum ATCC® 6013™ utilizing biodiesel- derived crude glycerol as the sole carbon source. Environ Prog Sustain 28:100–110

    CAS  Article  Google Scholar 

  18. Wang Y, Li X, Blaschek HP (2013) Effects of supplementary butyrate on butanol production and the metabolic switch in Clostridium beijerinckii NCIMB 8052: genome-wide transcriptional analysis with rna-sEq. Biotechnol Biofuels 6(1):138

    CAS  Article  Google Scholar 

  19. Xin F, Wang C, Dong W, Zhang W, Wu H, Ma J, Jiang M (2016) Comprehensive investigations of biobutanol production by a non-acetone and 1,3-propanediol generating Clostridium strain from glycerol and polysaccharides. Biotechnol Biofuels 9:220

    Article  Google Scholar 

  20. Xin F, Chen T, Jiang Y, Dong W, Zhang W, Zhang M, Wu H, Ma J, Jiang M (2017) Strategies for improved isopropanol-butanol production by a Clostridium strain from glucose and hemicellulose through consolidated bioprocessing. Biotechnol Biofuels 10:118

    Article  Google Scholar 

  21. Yu L, Zhao J, Xu M, Dong J, Varghese S, Yu M, Tang I, Yang S (2015) Metabolic engineering of Clostridium tyrobutyricum for n-butanol production: effects of CoA transferase. Appl Microbiol biot 99:4917–4930

    CAS  Article  Google Scholar 

  22. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21706125, 21727818, 21706124, and 31700092), the Jiangsu Province Natural Science Foundation for Youths (BK20170993, BK20170997), the Key Science and Technology Project of Jiangsu Province (BE2016389), and the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (XTE1840).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Min Jiang or Fengxue Xin.

Ethics declarations

Conflict of interest

The authors have declared there was no conflict of interest.

Additional information

Jiasheng Lu and Tianpeng Chen are contributed equally to this work.

Nucleotide Sequence Accession Numbers: This Whole Genome project has been deposited into GenBank under the accession no. PETE00000000. The version described in this paper is version PETE01000000.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Chen, T., Jiang, Y. et al. The draft genome sequence of Clostridium sp. strain CT7, an isolate capable of producing butanol but not acetone and 1,3-propanediol from crude glycerol. 3 Biotech 9, 63 (2019). https://doi.org/10.1007/s13205-019-1598-7

Download citation

Keywords

  • Glycerol
  • Butanol
  • Clostridium
  • By-products
  • AdhE
  • Draft genome sequencing