Biostimulation potentials of corn steep liquor in enhanced hydrocarbon degradation in chronically polluted soil

Abstract

The effects of corn steep liquor (CSL) on hydrocarbon degradation and microbial community structure and function was evaluated in field-moist soil microcosms. Chronically polluted soil treated with CSL (AB4) and an untreated control (3S) was compared over a period of 6 weeks. Gas chromatographic fingerprints of residual hydrocarbons revealed removal of 95.95% and 94.60% aliphatic and aromatic hydrocarbon fractions in AB4 system with complete disappearance of nC1–nC8, nC10, nC15, nC20–nC23 aliphatics and aromatics such as naphthalene, acenaphthylene, fluorene, phenanthrene, pyrene, benzo(a)anthracene, and indeno(123-cd)pyrene in 42 days. In 3S system, there is removal of 61.27% and 66.58% aliphatic and aromatic fractions with complete disappearance of nC2 and nC21 aliphatics and naphthalene, acenaphthylene, fluorene, phenanthrene, pyrene, and benzo(a)anthracene aromatics in 42 days. Illumina shotgun sequencing of the DNA extracted from the two systems showed the preponderance of Actinobacteria (31.46%) and Proteobacteria (38.95%) phyla in 3S and AB4 with the dominance of Verticillium (22.88%) and Microbacterium (8.16%) in 3S, and Laceyella (24.23%), Methylosinus (8.93%) and Pedobacter (7.73%) in AB4. Functional characterization of the metagenomic reads revealed diverse metabolic potentials and adaptive traits of the microbial communities in the two systems to various environmental stressors. It also revealed the exclusive detection of catabolic enzymes in AB4 system belonging to the aldehyde dehydrogenase superfamily. The results obtained in this study showed that CSL is a potential resource for bioremediation of hydrocarbon-polluted soils.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adebusoye SA, Ilori MO, Obayori OS, Oyetibo GO, Akindele KA, Amund OO (2010) Efficiency of cassava steep liquor for bioremediation of diesel oil-contaminated tropical agricultural soil. Environmentalist 30:23–24

    Google Scholar 

  2. Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic Press, San Diego

    Google Scholar 

  3. Amadi A, Bari YU (1992) Use of poultry manure for amendment of oil polluted soils in relation to the growth of maize (Zea mays). Environ Int 18:521–552

    CAS  Google Scholar 

  4. Andrew RWJ, Jackson JM (1996) Pollution and waste management. In: The natural environment and human impact. Longman Publishers, Singapore, pp 281–297

    Google Scholar 

  5. Aranda E (2016) Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota fungi. Curr Opin Biotechnol 38:1–8

    CAS  PubMed  Google Scholar 

  6. Atlas RM (1981) Microbial degradation of petroleum: an environmental perspective. Microbiol Rev 45:180–209

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bashir Y, Singh SP, Konwar BK (2014) Metagenomics: an application-based perspective. Chinese J Biol https://doi.org/10.1155/2014/146030

    Article  Google Scholar 

  8. Bossert I, Bartha R (1984) The fate of fuel spills in soil ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 435–473 In

    Google Scholar 

  9. Bundy JG, Paton GI, Campbell CD (2002) Microbial communities in different soils do not converge after diesel contamination. J Appl Microbiol 92:276–288

    CAS  PubMed  Google Scholar 

  10. Carrillo L, Ahrendts MRB, Maldonado MJ (2009) Alkalithermophilic actinomycetes in a subtropical area of Jujuy, Argentina. Revista Argentina de Microbiología 41:112–116

    CAS  PubMed  Google Scholar 

  11. Chen J-J, Lin L-B, Zhang L-L, Zhang J, Tang S-K, Wei Y-L, Li W-J (2012) Laceyella sediminis sp. nov., a thermophilic bacterium isolated from a hot spring. Int J Syst Evol Microbiol 62:38–42

    CAS  PubMed  Google Scholar 

  12. Chiani M, Akbarzadeh A, Farhangi A, Mehrabi MR (2010) Production of desferrioxamine B (Desfaral) using corn steep liquor in Streptomyces pilosus. Pak J Biol Sci 13:1151–1155

    CAS  PubMed  Google Scholar 

  13. Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: at a glance quality assessment of illumine second-generation sequencing data. BMC Bioinform 11:485

    Google Scholar 

  14. DeFlaun MF, Ensley BD, Steffan RJ (1992) Biological oxidation of hydrochlorofluorocarbons (HCFCs) by a methanotrophic bacterium. Biotechnol 10:1576–1578

    CAS  Google Scholar 

  15. Eilers KG, Lauber CL, Knight R, Fierer N (2010) Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol Biochem 42:896–903

    CAS  Google Scholar 

  16. El-Sayed AK, Abou-Dobara MI, El-Fallal A, Omar NF (2017) Gene sequence, modeling, and enzymatic characterization of α-amylase AmyLa from the thermophile Laceyella sp. DS3. Starch 69(5–6):1–9

    Google Scholar 

  17. Endo G, Narita M, Huang CC, Silver S (2002) Microbial heavy metal resistance transposons and plasmids: potential use for environmental biotechnology. J Environ Biotechnol 2:71–82

    Google Scholar 

  18. Ensign JC (1992) Introduction to the actinomycetes. In: Ballows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) the Prokaryotes. a handbook on the biology of bacteria, ecophysiology, isolation, identification, application. Springer, New York, pp 811–815

    Google Scholar 

  19. Esser D, Kouril T, Talfournier F et al (2013) Unravelling the function of paralogs of the aldehyde dehydrogenase super family from Sulfolobus solfataricus. Extremophiles 12:75–88

    Google Scholar 

  20. Fedorak PM, Westlake DWS (1986) Fungal metabolism of n-alkylbenzenes. Appl Environ Microbiol 51(2):435–437

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fierer N, Bradford MA, Jackson RB (2007) Towards an ecological classification of soil bacteria. Ecology 88:1354–1364

    PubMed  Google Scholar 

  22. Filipovic SS, Ristc MD, Sakac MB (2002) Technology of corn steep liquor application in animal mashes and their quality. Roum Biotechnol Lett 7:705–710

    CAS  Google Scholar 

  23. Fox JL (2011) Natural-born eaters. Nat Biotechnol 29:103–106

    CAS  PubMed  Google Scholar 

  24. Gibson DT, Parales RE (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11:236–243

    CAS  PubMed  Google Scholar 

  25. Godoy P, Reina R, Calderón A, Wittich R-M, García-Romera I, Aranda E (2016) Exploring the potential of fungi isolated from PAH-polluted soil as a source of xenobiotics-degrading fungi. Environ Sci Polut Res. https://doi.org/10.1007/s11356-016-7257-1

    Article  Google Scholar 

  26. Goldfarb KC, Karaoz U, Hanson CA et al (2011) Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front Microbiol 2:94

    PubMed  PubMed Central  Google Scholar 

  27. Graziano M, Rizzo C, Michaud L, Porporato EMD, De Domenico E, Spano N, Lo Giudice A (2016) Biosurfactant production by hydrocarbon degrading Brevibacterium and Vibrio isolates from the sea pen Pteroeides spinosum (Ellis, 1764). J Basic Microbiol 56(9):963–974

    CAS  PubMed  Google Scholar 

  28. Habe H, Chung JS, Lee JH, Kasuga K, Yoshida T, Nojiri H, Omori T (2001) Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by two types of bacteria having angular dioxygenases with different features. Appl Environ Microbiol 67:3610–3617

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Habe H, Ashikawa Y, Saiki Y, Yoshida T, Nojiri H, Omori T (2002) Sphingomonas sp. strain KA1, carrying a carbazole dioxygenase gene homologue, degrades chlorinated dibenzo-p-dioxins in soil. FEMS Microbiol Lett 211:43–49

    CAS  PubMed  Google Scholar 

  30. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–678

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hanphakphoom S, Maneewong N, Sukkhum S, Tokuyama S, Kitpreechavanich V (2014) Characterization of poly(L-lactide)-degrading enzyme produced by thermophilic filamentous bacteria Laceyella sacchari LP175. J Gen Appl Microbiol 60:13–22

    CAS  PubMed  Google Scholar 

  32. Kachienga L, Jitendra K, Momba M (2018) Metagenomic profiling for assessing microbial diversity and microbial adaptation to degradation of hydrocarbons in two South African petroleum contaminated water aquifers. Sci Rep 8:7564

    PubMed  PubMed Central  Google Scholar 

  33. Kanaly RA, Harayama S (2010) Advances in the field of high molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microbiol Biotechnol 3(2):132–164

    Google Scholar 

  34. Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428(4):726–731

    CAS  PubMed  Google Scholar 

  35. Keegan KP, Glass EM, Meyer F (2016) MG-RAST, a metagenomics service for analysis of microbial community structure and function. Methods Mol Biol 1399:207–233

    CAS  PubMed  Google Scholar 

  36. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie-2. Nat Methods 9(4):357–359

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Larkin MJ, Kulakov LA, Allen CC (2005) Biodegradation and Rhodococcus-masters of catabolic versatility. Curr Opin Biotechnol 16:282–290

    CAS  PubMed  Google Scholar 

  38. Lawford HG, Rousseau JD (1997) Corn steep liquor as a cost-effective nutrition adjunct in high performance Zymomonas ethanol fermentation. Appl Biochem Biotechnol 63–65:287–304

    PubMed  Google Scholar 

  39. Liggert RW, Koffler H (1948) Corn steep liquor in microbiology. Bacteriol Rev 12(4):297–311

    Google Scholar 

  40. Lin C, Olson BH (1995) Occurrence of cop-like resistance genes among bacteria isolated from a water distribution system. Can J Microbiol 41:642–646

    CAS  Google Scholar 

  41. Lomthong T, Chotineeranat S, Kitpreechavanich V (2015) Production and characterization of raw starch degrading enzyme from a newly isolated thermophilic filamentous bacterium, Laceyella sacchari LP175. Starch 67(3–4):255–266

    CAS  Google Scholar 

  42. Maddipati P, Atiyeh HK, Bellmer DN, Huhnke RL (2011) Ethanol production from Syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Biores Technol 102:6494–6501

    CAS  Google Scholar 

  43. Maier RM (2009) Microorganisms and organic pollutants. In: Maier RM, Pepper IL, Gerba CP (eds) Environmental microbiology, second edn. Academic Press, London, pp 387–420

    Google Scholar 

  44. Maier RM, Pepper IL, Gerba CP (2000) Environmental microbiology. Academic Press, London

    Google Scholar 

  45. Manickam N, Mau M, Schlo¨mann M (2006) Characterization of the novel HCH-degrading Microbacterium sp. ITRC1. Appl Microbiol Biotechnol 69:580–588

    CAS  PubMed  Google Scholar 

  46. Marchler-Bauer A, Derbyshire MK, Gonzales NR et al (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43(D):222–226

    Google Scholar 

  47. Margesin R, Zhang D-C (2013) Pedobacter ruber sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 63:339–344

    CAS  PubMed  Google Scholar 

  48. Morikawa M, Daido H, Takao T, Murata S, Shimonishi Y, Imanaka T (1993) A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. J Bacteriol 175:6459–6466

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Muangchinda C, Chavanich S, Viyakarn V, Watanabe K, Imura S, Vangnai AS, Pinyakong O (2015) Abundance and diversity of functional genes involved in the degradation of aromatic hydrocarbons in Antarctic soils and sediments around Syowa Station. Environ Sci Pollut Res 22:4725–4735

    CAS  Google Scholar 

  50. Mutnuri S, Vasudevan N, Kaestner M (2005) Degradation of anthracene and pyrene supplied by microcrystals and nonaqueous-phase liquids. Appl Microbiol Biotechnol 67:569–576

    CAS  PubMed  Google Scholar 

  51. Nemergut DR, Martin AP, Schmidt SK (2004) Intergon diversity in heavy-metal-contaminated mine tailings and inferences about integron evolution. Appl Environ Microbiol 70:1160–1168

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199

    CAS  PubMed  Google Scholar 

  54. Nojiri H, Nam J-W, Kosaka M et al (1999) Diverse oxygenations catalyzed by carbazole 1,9a-dioxygenase from Pseudomonas sp. strain CA10. J Bacterio 181(10):3105–3113

    CAS  Google Scholar 

  55. Nojiri H, Habe H, Omori T (2001) Bacterial degradation of aromatic compounds via angular dioxygenations. J Gen Appl Microbiol 47:279–305

    CAS  PubMed  Google Scholar 

  56. Nucifora G, Chu L, Misra TK, Silver S (1989) Cadmium resistance from Staphylococcus aureus plasmid p1258 cadA gene results from cadmium-efflux ATPase. Proc Natl Acad Sci USA 86:3544–3548

    CAS  PubMed  Google Scholar 

  57. Obayori OS, Ilori MO, Adebusoye SA, Amund OO, Oyetibo GO (2008) Microbial population changes in tropical agricultural soil experimentally contaminated with crude petroleum. Afr J Biotechnol 7:4512–4520

    CAS  Google Scholar 

  58. Obayori OS, Ilori MO, Adebusoye SA, Oyetibo GO, Omotayo AE, Amund OO (2010) Effects of corn steep liquor on growth rate and pyrene degradation by Pseudomonas strains. Current Microbiol 60:407–411

    CAS  PubMed  Google Scholar 

  59. Obayori OS, Salam LB, Anifowoshe WT, Odunewu ZM, Amosu OE, Ofulue BE (2015) Enhanced Degradation of Petroleum Hydrocarbons in Corn-Steep-Liquor-Treated Soil Microcosm. Soil Sediment Contam 24(7):731–743

    CAS  Google Scholar 

  60. Okoh AI (2006) Biodegradation alternative in the clean-up of petroleum hydrocarbon pollutants. Biotechnol Mol Biol Rev 1:38–50

    Google Scholar 

  61. Okolo JC, Amadi EN, Odu CTI (2005) Effect of soil treatments containing poultry manure on crude oil degradation in a sandy loam soil. Appl Ecol Environ Res 3:47–55

    Google Scholar 

  62. Oldenhuis R, Vink RL, Janssen DB, Witholt B (1989) Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl Environ Microbiol 55(11):2819–2826

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Oulas A, Pavloudi G, Polymanakou P, Pavlopoulus GA, Papanikolaou N, Kotoulas G, Arvanitidis C, Iliopoulus I (2015) Metagenomics: tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. Bioinform Biol Insights 9:75–88

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Outten FW, Outten CE, O’Halloran T (2000) Metalloregulatory systems at the interface between bacterial metal homeostasis and resistance. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM Press, Washington D.C, pp 145–157

    Google Scholar 

  65. Parks DH, Tyson GW, Hugenhiltz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30(21):3123–3124

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Perez-Pantoja D, De la Iglesia R, Pieper DH, Gonzalez B (2008) Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134. FEMS Microbiol Rev 32:736–794

    CAS  PubMed  Google Scholar 

  67. Pérez-Pantoja D, González B, Pieper DH (2010) Aerobic degradation of aromatic hydrocarbons. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 799–837

    Google Scholar 

  68. Perez-Pentoja D, Donoso R, Agullo L, Cordova M, Seeger M, Pieper DH, Gonzalez B (2012) Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environ Microbiol 14(5):1091–1117

    Google Scholar 

  69. Philp JC, Bamforth SM, Singleton I, Atlas RM (2005) Environmental pollution and restoration: a role for bioremediation. In: Atlas RM, Philp J (eds) Applied microbial solutions for real-world environmental clean-up. ASM, Washington, DC, pp 1–48

    Google Scholar 

  70. Pritchard RH, Mueller JG, Rogers JC, Kremer FV, Glaser JA (1992) Oil spill bioremediations: experiences, lesson, and results from the Exxon Valdez oil spill in Alaska. Biodegradation 3:315–335

    CAS  Google Scholar 

  71. Rho M, Tang H, Ye Y (2010) FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acid Res 38:20–191

    Google Scholar 

  72. Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11(10):2477–2490

    CAS  PubMed  Google Scholar 

  73. Saha BC, Racine FM (2010) Effect of pH and corn steep liquor variability on mannitol production by Lactobacillus intermidius NRRL B-3693. Appl Microbiol Biotechnol 87:553–556

    CAS  PubMed  Google Scholar 

  74. Salam LB (2016) Metabolism of waste engine oil by Pseudomonas species. 3 Biotech 6(1):1–10

    Google Scholar 

  75. Salam LB, Ilori MO, Amund OO et al (2014) Carbazole angular dioxygenation and mineralization by bacteria isolated from hydrocarbon-contaminated tropical African soil. Environ Sci Pollut Res 21:9311–9324

    CAS  Google Scholar 

  76. Salam LB, Ilori MO, Amund OO (2015) Carbazole degradation in the soil microcosm by tropical bacterial strains. Brazilian J Microbiol 46(4):1037–1044

    CAS  Google Scholar 

  77. Salam LB, Obayori OS, Nwaokorie FO, Suleiman A, Mustapha R (2017) Metagenomic insights into effects of spent engine oil perturbation on the microbial community composition and function in a tropical agricultural soil. Environ Sci Pollut Res 24:7139–7159

    CAS  Google Scholar 

  78. Salam LB, Ilori MO, Amund OO, LiiMien Y, Nojiri H (2018) Characterization of bacterial community structure in a hydrocarbon-contaminated tropical African soil. Environ Technol 39(7):939–951

    CAS  PubMed  Google Scholar 

  79. Schippers A, Bosecker K, Spro¨er C, Schumann P (2005) Microbacterium oleivorans sp. nov. and Microbacterium hydrocarbonoxydans sp. nov., novel crude-oil-degrading Gram-positive bacteria. Int J Syst Evol Microbiol 55:655–660

    CAS  PubMed  Google Scholar 

  80. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mother: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Simister R, Poutasse CM, Thurston A, Reeve J, Baker MC, White HK (2015) Degradation of oil by fungi isolated from Gulf of Mexico beaches. Mar Pollut Bull 100(1):327–333

    CAS  PubMed  Google Scholar 

  82. Singer ME, Finnerty WR (1990) Physiology of biosurfactant synthesis by Rhodococcus sp H13-A. Can J Microbiol 36:741–745

    CAS  PubMed  Google Scholar 

  83. Singh V, Pandey VC, Pathak DC, Agrawal S (2012) Purification and characterization of Laceyella sacchari strain B42 xylanase and its potential for pulp biobleaching. Afr J Microbiol Res 6(7):1397–1410

    CAS  Google Scholar 

  84. Singleton DR, Dickey AN, Scholl EH, Wright FA, Aitken MD (2016) Complete genome sequence of a bacterium representing a deep uncultivated lineage within the gammaproteobacterial associated with the degradation of polycyclic aromatic hydrocarbons. Genome Announc. https://doi.org/10.1128/genomeA.01086-16

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sophos NA, Vasiliou V (2003) Aldehyde dehydrogenase gene superfamily: the 2002 update. Chem Biol Interact 143–144:5–22

    PubMed  Google Scholar 

  86. Spain A, Alm E (2003) Implications of microbial heavy metal tolerance in the environment. Rev Undergraduate Res 2:1–6

    Google Scholar 

  87. Streit WR, Schmitz RA (2004) Metagenomics- key to the uncultured microbes. Curr Opin Microbiol 7:492–498

    CAS  PubMed  Google Scholar 

  88. Tabacchioni S, Chiarini L, Bevivino A et al (2000) Bias caused by using different isolation media for assessing the genetic diversity of a natural microbial population. Microb Ecol 40:169–176

    CAS  PubMed  Google Scholar 

  89. Talfournier F, Stines-Chaumeil C, Branlant G (2011) Methylmalonate semialdehyde dehydrogenase from Bacillus subtilis: substrate specificity and coenzyme a binding. J Biol Chem 286(25):21971–21981

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Tatusov RL, Natale DA, Garkavtsev IV et al (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22–28

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Teal JM, Farrington JW, Burns K, Stegeman J, Tripp BW, Woodin BR, Phinney C (1992) The West Famouth oil spill after 20 years: fate of fuel oil compounds and effects on animals. Marine Pollut Bull 24(12):607–614

    CAS  Google Scholar 

  92. Top EM, Springael D (2003) The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 14:262–269

    CAS  PubMed  Google Scholar 

  93. Trevors JT (1998) Bacterial biodiversity in soil with an emphasis on chemically-contaminated soils. Water Air Soil Pollut 101:45–67

    CAS  Google Scholar 

  94. Vasiliou V, Pappa A, Petersen DR (2000) Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism. Chem Biol Interact 129:1–19

    CAS  PubMed  Google Scholar 

  95. Villadangos AF, Fu H-L, Gil JA, Messens J, Rosen BP, Meteos LM (2012) Efflux permease CgAcr3-1 of Corynebacterium glutamicum is an arsenite-specific antiporter. J Biol Chem 287(1):723–735

    CAS  PubMed  Google Scholar 

  96. Vivas A, Moreno B, del Val C, Macci C, Masciandaro G, Benitez E (2008) Metabolic and bacterial diversity in soils historically contaminated by heavy metals and hydrocarbons. J Environ Monit 10:1287–1296

    CAS  PubMed  Google Scholar 

  97. Yakubu MB (2007) Biodegradation of Lagoma crude oil using pig dung. Afr J Biotechnol 6(24):2821–2825

    CAS  Google Scholar 

  98. Yveline LD, Frederick J, Pierre D, Michael G, Jean CB, Gilbert M (1997) Hydrocarbon balance of a site which had been highly and chronically contaminated by petroleum wastes of refinery from 1956 to 1997. Marine Pollut Bull 22:103–109

    Google Scholar 

  99. Zabielska-Matejuk J, Czaczyk K (2006) Biodegradation of newquartenaey ammonium compounds in treated wood by mould fungi. Wood Sci Technol 40(6):461–475

    CAS  Google Scholar 

  100. Zhang D-C, Schinner F, Margesin R (2010a) Pedobacter bauzanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 60:2592–2595

    CAS  PubMed  Google Scholar 

  101. Zhang J, Tang S-K, Zhang Y-Q, Yu L-Y, Klenk H-P, Li W-J (2010b) Laceyella tengchongensis sp. nov., a thermophile isolated from soil of a volcano. Int J Syst Evol Microbiol 60:2226–2230

    CAS  PubMed  Google Scholar 

  102. Zhang D-C. Liu H-C, Zhou Y-G, Schinner F, Mrgesin R (2011) Pseudomonas bauzanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 61:2333–2337

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lateef B. Salam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2730 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salam, L.B., Ishaq, A. Biostimulation potentials of corn steep liquor in enhanced hydrocarbon degradation in chronically polluted soil. 3 Biotech 9, 46 (2019). https://doi.org/10.1007/s13205-019-1580-4

Download citation

Keywords

  • Corn steep liquor
  • Hydrocarbon-polluted soil
  • Soil microcosm
  • Illumina shotgun sequencing
  • Microbial community structure
  • Bioremediation