Skip to main content
Log in

Characterization of Pleurotus djamor neohaplonts recovered by production of protoplasts and chemical dedikaryotization

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Production of hybrid strains is accomplished by mating monosporic isolates or neohaplonts, obtained either by chemical dedikaryotization or by production of protoplast. However, differences in growth rate among recovered neohaplonts have been reported. The presence of phenotypic and genetic changes among the neohaplonts recovered either by chemical dedikaryotization or by production of protoplast, was evaluated by measuring growth and morphology, and by molecular characterization using six ISSR markers to identify polymorphisms. Neohaplonts recovered by both methods presented variation in growth rate depending on their compatibility type and recovery method. Using ISSR markers, 59.2% polymorphism was established. Neohaplonts recovered by both monokaryotization procedures presented differences in growth rate and polymorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilar DL, Zárate SPB, Villanueva AR et al (2018) Utilización de marcadores ITS e ISSR para la caracterización molecular de cepas híbridas de Pleurotus djamor. Revista Iberoamericana de Micología 35:49–55. https://doi.org/10.1016/j.riam.2017.06.003

    Article  Google Scholar 

  • Avin FA, Bhassu S, Shin TY, Sabaratnam V (2012) Molecular classification and phylogenetic relationships of selected edible Basidiomycetes species. Mol Biol Rep 39:7355–7364. https://doi.org/10.1007/s11033-012-1567-2

    Article  CAS  PubMed  Google Scholar 

  • Baty F, Delignette-Muller M-L (2004) Estimating the bacterial lag time: which model, which precision? Int J of Food Microbiol 91:261–277. https://doi.org/10.1016/j.ijfoodmicro.2003.07.002

    Article  Google Scholar 

  • Castle AJ, Horgen PA, Anderson JB (1987) Restriction fragment length polymorphisms in the mushrooms Agaricus brunnescens and Agaricus bitorquis. Appl Environ Microbiol 53:816–822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark TA, Anderson JB (2004) Dikaryons of the Basidiomycete Fungus Schizophyllum commune: evolution in long-term culture. Genetics 167:1663–1675. https://doi.org/10.1534/genetics.104.027235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly V, Simchen G (1968) Linkage to the incompatibility factors and maintenance of genetic variation in selection lines of Schizophyllum commune. Heredity 23:387–402

    Article  Google Scholar 

  • Dhitaphichit P, Pornsuriya C (2005) Protoplast fusion between Pleurotus ostreatus and P. djamor. Songklanakarin J Sci Technol 27:976–982

    Google Scholar 

  • Eger G (1978) Biology and Breeding of Pleurotus. In: Chang ST, Hayes WA (eds) The Biology and cultivation of edible mushrooms. Academic Press, New York

    Google Scholar 

  • Fukumasa-Nakai Y, Matsumoto T, Komatsu M (1994) Dedikaryotization of the Shitake mushroom, Lentinula edodes by the protoplast regeneration method. J Gen Appl Microbiol 40:551–562. https://doi.org/10.2323/jgam.40.551

    Article  CAS  Google Scholar 

  • Guadarrama-Mendoza PC, Valencia del Toro G, Ramírez-Carrillo R et al (2014) Morphology and mycelial growth rate of Pleurotus spp. strains from the Mexican mixtec region. Braz J Microbiol 45:861–872. https://doi.org/10.1590/S1517-83822014000300016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawasumi T, Kiuchi N, Futatsugi Y et al (2014) High Yield Preparation of Lentinus edodes (“Shiitake”) protoplasts with regeneration capacity and mating type stability. Agric Biol Chem 51:1649–1656. https://doi.org/10.1080/00021369.1987.10868271

    Article  Google Scholar 

  • Kis-Papo T, Kirzhner V, Wasser SP, Nevo E (2011) Evolution of genomic diversity and sex at extreme environments: Fungal life under hypersaline Dead Sea stress. Proc Natl Acad Sci 100:14970–14975. https://doi.org/10.1073/pnas.2036284100

    Article  CAS  Google Scholar 

  • Korol AI, Preygel IA, Preygel SI (1994) Recombination Variability and Evolution. Chapman & Hall, London, pp 361

    Google Scholar 

  • Kumara KLW, Edirimanna ICS (2009) Improvement of strains of two oyster mushroom cultivars using duel culture technique. World Appl Sci J 7(5):654–660

    Google Scholar 

  • Leal-Lara H, Eger-Hummel G (1982) A monokaryotization method and its use for genetic studies in wood-rotting basidiomycetes. Theor Appl Genet 61:1–4. https://doi.org/10.1007/BF00261513

    Article  Google Scholar 

  • Mallick P, Sikdar SR (2014) Production and molecular characterization of somatic hybrids between Pleurotus florida and Lentinula edodes. World J Microbiol Biotechnol 30:2283–2293. https://doi.org/10.1007/s11274-014-1652-x

    Article  PubMed  Google Scholar 

  • Nevo E (2001) Evolution of genome-phenome diversity under environmental stress. Proc Natl Acad Sci. 98: 6233–6240

    Article  CAS  Google Scholar 

  • Ramírez Carrillo R, Marroquin Corona C, Leal Lara H, Savoie JM, Foulongne-Oriol M, Largeteau M, Barroso G (2011) Strain improvement of edible fungi with Pleurotus eryngii neohaplonts. In: Proceedings of the 7th international conference on mushroom biology and mushroom products, Arcachon, France, pp 62–70

  • Roldán-Ruiz I, Dendauw J, Van Bockstaele E et al (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed 6:125–134. https://doi.org/10.1023/A:1009680614564

    Article  Google Scholar 

  • Royse DJ (2014) A global perspective on the high five: Agaricus, Pleurotus, Lentinula, Auricularia and Flammulina. In: Proceedings of the 8th international conference on mushroom biology and mushroom products, New Delhi, India, pp 1–6

    Google Scholar 

  • Royse DJ, Baars J, Tan Q (2017) Current Overview of Mushroom Production in the World. In: Diego CZ, Pardo-Giménez A (eds) Edible and medicinal mushrooms: technology and applications. Wiley, Chichester

    Google Scholar 

  • Selvakumar P, Rajasekar S, Babu AG et al (2015) Improving biological efficiency of Pleurotus strain through protoplast fusion between P. ostreatus var. florida and P. djamor var. roseus. Food Sci Biotechnol 24:1741–1748. https://doi.org/10.1007/s10068-015-0226-5

    Article  CAS  Google Scholar 

  • Silva ADS, Oliveira EJ de, Haddad F et al (2013) Molecular fingerprinting of Fusarium oxysporum f. sp. passiflorae isolates using AFLP markers. Sci Agric (Piracicaba Braz) 70:108–115. https://doi.org/10.1590/S0103-90162013000200008

    Article  CAS  Google Scholar 

  • Simchen G (1966) Monokaryotic variation and haploid selection in Schizophyllum commune. Heredity 21:241–263. https://doi.org/10.1038/hdy.1966.21

    Article  CAS  PubMed  Google Scholar 

  • Simchen G, Jinks JL (1964) The determination of dikaryotic growth rate in the basidiomycete Schizophyllum commune: a biometrical analysis. Heredity 19:629–649. https://doi.org/10.1038/hdy.1964.75

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Kamal S (2017) Genetic Aspects and Strategies for Obtaining Hybrids. In: Diego CZ, Pardo-Giménez A (eds) Edible and medicinal mushrooms: technology and applications. Wiley, Chichester

    Google Scholar 

  • Valencia del Toro G, Leal-Lara H (1999) Estudios de compatibilidad entre cepas de Pleurotus spp. con cuerpos fructíferos de diversos colores. Rev Mex Mic 15:65–71

    Google Scholar 

  • Valencia del Toro G, Leal-Lara H (2002) Fruit body color in Pleurotus spp. hybrid strains obtained by matings of compatible neohaplonts. In: Proceedings of the 4th international conference on mushroom biology and mushroom products, Cuernavaca, Mexico, pp 151–159

  • Valenzuela Cobos JD, Durán Páramo E, Villanueva Arce R et al (2017) Production of hybrid strains among Pleutorus and Lentinula and evaluation of their mycelial growth kinetics on malt extract agar and wheat grain using the Gompertz and Hill models. Emirates J Food Agric 29(12):927–935. https://doi.org/10.9755/ejfa.2017.v29.i12.1563

    Article  Google Scholar 

  • Varshney RK, Chabane K, Hendre PS et al (2007) Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Sci 173:638–649. https://doi.org/10.1016/j.plantsci.2007.08.010

    Article  CAS  Google Scholar 

  • Wessels JGH, Hoeksema HL, Stemerding D (1976) Reversion of protopasts from dikaryotic mycelium od Schizophyllum commune. Protoplasma 89:317–321

    Article  Google Scholar 

  • Yin Y, Liu Y, Li H et al (2013) Genetic Diversity of Pleurotus pulmonarius Revealed by RAPD, ISSR, and SRAP fingerprinting. Curr Microbiol 68:397–403. https://doi.org/10.1007/s00284-013-0489-0

    Article  CAS  PubMed  Google Scholar 

  • Zervakis G, Philippoussis A, Ioannidou S, Diamantopoulou P (2001) Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates. Folia Microbiol 46:231–234. https://doi.org/10.1007/BF02818539

    Article  CAS  Google Scholar 

  • Zhao J, Chang S-T (1993) Monokaryotization by protoplasting heterothaliic species of edible mushrooms. World J Microbiol Biotechnol 9:538–543

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support received: IPN-SIP Project: 20170419, 20180961.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Valencia del Toro.

Ethics declarations

Conflict of interest

The authors confirm that there are no known conflicts of interest associated with this publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández, A.S., Valenzuela Cobos, J.D., Martínez, J.H. et al. Characterization of Pleurotus djamor neohaplonts recovered by production of protoplasts and chemical dedikaryotization. 3 Biotech 9, 24 (2019). https://doi.org/10.1007/s13205-018-1532-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1532-4

Keywords

Navigation