3 Biotech

, 9:24 | Cite as

Characterization of Pleurotus djamor neohaplonts recovered by production of protoplasts and chemical dedikaryotization

  • Abraham Sánchez Hernández
  • Juan Diego Valenzuela Cobos
  • Joel Herrera Martínez
  • Ramón Villanueva Arce
  • Yolanda de las Mercedes Gómez y Gomez
  • Paola Berenice Zarate Segura
  • María Eugenia Garín Aguilar
  • Hermilo Leal Lara
  • Gustavo Valencia del ToroEmail author
Original Article


Production of hybrid strains is accomplished by mating monosporic isolates or neohaplonts, obtained either by chemical dedikaryotization or by production of protoplast. However, differences in growth rate among recovered neohaplonts have been reported. The presence of phenotypic and genetic changes among the neohaplonts recovered either by chemical dedikaryotization or by production of protoplast, was evaluated by measuring growth and morphology, and by molecular characterization using six ISSR markers to identify polymorphisms. Neohaplonts recovered by both methods presented variation in growth rate depending on their compatibility type and recovery method. Using ISSR markers, 59.2% polymorphism was established. Neohaplonts recovered by both monokaryotization procedures presented differences in growth rate and polymorphism.


Hybrid production ISSR Monokaryotization Polymorphism 



Financial support received: IPN-SIP Project: 20170419, 20180961.

Compliance with ethical standards

Conflict of interest

The authors confirm that there are no known conflicts of interest associated with this publication.


  1. Aguilar DL, Zárate SPB, Villanueva AR et al (2018) Utilización de marcadores ITS e ISSR para la caracterización molecular de cepas híbridas de Pleurotus djamor. Revista Iberoamericana de Micología 35:49–55. CrossRefGoogle Scholar
  2. Avin FA, Bhassu S, Shin TY, Sabaratnam V (2012) Molecular classification and phylogenetic relationships of selected edible Basidiomycetes species. Mol Biol Rep 39:7355–7364. CrossRefPubMedGoogle Scholar
  3. Baty F, Delignette-Muller M-L (2004) Estimating the bacterial lag time: which model, which precision? Int J of Food Microbiol 91:261–277. CrossRefGoogle Scholar
  4. Castle AJ, Horgen PA, Anderson JB (1987) Restriction fragment length polymorphisms in the mushrooms Agaricus brunnescens and Agaricus bitorquis. Appl Environ Microbiol 53:816–822PubMedPubMedCentralGoogle Scholar
  5. Clark TA, Anderson JB (2004) Dikaryons of the Basidiomycete Fungus Schizophyllum commune: evolution in long-term culture. Genetics 167:1663–1675. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Connolly V, Simchen G (1968) Linkage to the incompatibility factors and maintenance of genetic variation in selection lines of Schizophyllum commune. Heredity 23:387–402CrossRefGoogle Scholar
  7. Dhitaphichit P, Pornsuriya C (2005) Protoplast fusion between Pleurotus ostreatus and P. djamor. Songklanakarin J Sci Technol 27:976–982Google Scholar
  8. Eger G (1978) Biology and Breeding of Pleurotus. In: Chang ST, Hayes WA (eds) The Biology and cultivation of edible mushrooms. Academic Press, New YorkGoogle Scholar
  9. Fukumasa-Nakai Y, Matsumoto T, Komatsu M (1994) Dedikaryotization of the Shitake mushroom, Lentinula edodes by the protoplast regeneration method. J Gen Appl Microbiol 40:551–562. CrossRefGoogle Scholar
  10. Guadarrama-Mendoza PC, Valencia del Toro G, Ramírez-Carrillo R et al (2014) Morphology and mycelial growth rate of Pleurotus spp. strains from the Mexican mixtec region. Braz J Microbiol 45:861–872. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kawasumi T, Kiuchi N, Futatsugi Y et al (2014) High Yield Preparation of Lentinus edodes (“Shiitake”) protoplasts with regeneration capacity and mating type stability. Agric Biol Chem 51:1649–1656. CrossRefGoogle Scholar
  12. Kis-Papo T, Kirzhner V, Wasser SP, Nevo E (2011) Evolution of genomic diversity and sex at extreme environments: Fungal life under hypersaline Dead Sea stress. Proc Natl Acad Sci 100:14970–14975. CrossRefGoogle Scholar
  13. Korol AI, Preygel IA, Preygel SI (1994) Recombination Variability and Evolution. Chapman & Hall, London, pp 361Google Scholar
  14. Kumara KLW, Edirimanna ICS (2009) Improvement of strains of two oyster mushroom cultivars using duel culture technique. World Appl Sci J 7(5):654–660Google Scholar
  15. Leal-Lara H, Eger-Hummel G (1982) A monokaryotization method and its use for genetic studies in wood-rotting basidiomycetes. Theor Appl Genet 61:1–4. CrossRefGoogle Scholar
  16. Mallick P, Sikdar SR (2014) Production and molecular characterization of somatic hybrids between Pleurotus florida and Lentinula edodes. World J Microbiol Biotechnol 30:2283–2293. CrossRefPubMedGoogle Scholar
  17. Nevo E (2001) Evolution of genome-phenome diversity under environmental stress. Proc Natl Acad Sci. 98: 6233–6240CrossRefGoogle Scholar
  18. Ramírez Carrillo R, Marroquin Corona C, Leal Lara H, Savoie JM, Foulongne-Oriol M, Largeteau M, Barroso G (2011) Strain improvement of edible fungi with Pleurotus eryngii neohaplonts. In: Proceedings of the 7th international conference on mushroom biology and mushroom products, Arcachon, France, pp 62–70Google Scholar
  19. Roldán-Ruiz I, Dendauw J, Van Bockstaele E et al (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed 6:125–134. CrossRefGoogle Scholar
  20. Royse DJ (2014) A global perspective on the high five: Agaricus, Pleurotus, Lentinula, Auricularia and Flammulina. In: Proceedings of the 8th international conference on mushroom biology and mushroom products, New Delhi, India, pp 1–6Google Scholar
  21. Royse DJ, Baars J, Tan Q (2017) Current Overview of Mushroom Production in the World. In: Diego CZ, Pardo-Giménez A (eds) Edible and medicinal mushrooms: technology and applications. Wiley, ChichesterGoogle Scholar
  22. Selvakumar P, Rajasekar S, Babu AG et al (2015) Improving biological efficiency of Pleurotus strain through protoplast fusion between P. ostreatus var. florida and P. djamor var. roseus. Food Sci Biotechnol 24:1741–1748. CrossRefGoogle Scholar
  23. Silva ADS, Oliveira EJ de, Haddad F et al (2013) Molecular fingerprinting of Fusarium oxysporum f. sp. passiflorae isolates using AFLP markers. Sci Agric (Piracicaba Braz) 70:108–115. CrossRefGoogle Scholar
  24. Simchen G (1966) Monokaryotic variation and haploid selection in Schizophyllum commune. Heredity 21:241–263. CrossRefPubMedGoogle Scholar
  25. Simchen G, Jinks JL (1964) The determination of dikaryotic growth rate in the basidiomycete Schizophyllum commune: a biometrical analysis. Heredity 19:629–649. CrossRefPubMedGoogle Scholar
  26. Singh M, Kamal S (2017) Genetic Aspects and Strategies for Obtaining Hybrids. In: Diego CZ, Pardo-Giménez A (eds) Edible and medicinal mushrooms: technology and applications. Wiley, ChichesterGoogle Scholar
  27. Valencia del Toro G, Leal-Lara H (1999) Estudios de compatibilidad entre cepas de Pleurotus spp. con cuerpos fructíferos de diversos colores. Rev Mex Mic 15:65–71Google Scholar
  28. Valencia del Toro G, Leal-Lara H (2002) Fruit body color in Pleurotus spp. hybrid strains obtained by matings of compatible neohaplonts. In: Proceedings of the 4th international conference on mushroom biology and mushroom products, Cuernavaca, Mexico, pp 151–159Google Scholar
  29. Valenzuela Cobos JD, Durán Páramo E, Villanueva Arce R et al (2017) Production of hybrid strains among Pleutorus and Lentinula and evaluation of their mycelial growth kinetics on malt extract agar and wheat grain using the Gompertz and Hill models. Emirates J Food Agric 29(12):927–935. CrossRefGoogle Scholar
  30. Varshney RK, Chabane K, Hendre PS et al (2007) Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Sci 173:638–649. CrossRefGoogle Scholar
  31. Wessels JGH, Hoeksema HL, Stemerding D (1976) Reversion of protopasts from dikaryotic mycelium od Schizophyllum commune. Protoplasma 89:317–321CrossRefGoogle Scholar
  32. Yin Y, Liu Y, Li H et al (2013) Genetic Diversity of Pleurotus pulmonarius Revealed by RAPD, ISSR, and SRAP fingerprinting. Curr Microbiol 68:397–403. CrossRefPubMedGoogle Scholar
  33. Zervakis G, Philippoussis A, Ioannidou S, Diamantopoulou P (2001) Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates. Folia Microbiol 46:231–234. CrossRefGoogle Scholar
  34. Zhao J, Chang S-T (1993) Monokaryotization by protoplasting heterothaliic species of edible mushrooms. World J Microbiol Biotechnol 9:538–543CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • Abraham Sánchez Hernández
    • 1
  • Juan Diego Valenzuela Cobos
    • 1
  • Joel Herrera Martínez
    • 3
  • Ramón Villanueva Arce
    • 1
  • Yolanda de las Mercedes Gómez y Gomez
    • 1
  • Paola Berenice Zarate Segura
    • 5
  • María Eugenia Garín Aguilar
    • 2
  • Hermilo Leal Lara
    • 4
  • Gustavo Valencia del Toro
    • 1
    Email author
  1. 1.Laboratorio de Cultivos Celulares de la Sección de Estudios de Posgrado e InvestigaciónUPIBI, Instituto Politécnico NacionalMexico CityMéxico
  2. 2.Laboratorio de FarmacobiologíaFES Iztacala, Universidad Nacional Autónoma de MéxicoTlalnepantlaMéxico
  3. 3.Centro de Ciencias de la ComplejidadCircuito Mario de la Cueva 20, Insurgentes Cuicuilco Universidad Nacional Autónoma de México, Cd. UniversitariaMexico CityMéxico
  4. 4.Departamento de Alimentos y Biotecnología, Facultad de QuímicaUniversidad Nacional Autónoma de México, Cd. UniversitariaMexico CityMéxico
  5. 5.Medicina TraslacionalESM, Instituto Politécnico NacionalMexico CityMéxico

Personalised recommendations