Skip to main content

Advertisement

Log in

Functional annotation of differentially expressed fetal cardiac microRNA targets: implication for microRNA-based cardiovascular therapeutics

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Gene expression pattern of a failing heart depicts remarkable similarity with developing fetal heart. Elucidating genetic as well as epigenetic mechanisms regulating the gene expression during cardiac development will improve our understanding of cardiovascular diseases. In the present study, we aimed to validate and characterize differentially expressed known microRNAs (miRNA) obtained from next generation sequencing data of two fetal cardiac developmental stages (days 4th and 14th) from chicken (G. gallus domesticus) using bioinformatic approaches. Potential mRNA targets of individual miRNA were identified and classified according to their biological, cellular, and molecular functions. Functional annotation of putative target genes was performed to predict their association with cardiovascular diseases. We identified a total of 19 differentially expressed miRNAs between 4th and 14th day sample from the data sets obtained by next generation sequencing. A total of nearly 1522 potential targets ranging from 15 to 270 for each miRNA were predicted out of which 1221 were unique, while 301 were overlapping. Gene ontology and KEGG analysis revealed that majority of these target genes regulate critical cellular and molecular processes including transcriptional regulation, protein transport, signal transduction, matrix remodeling, Ras signaling, MAPK signaling, and TGF-beta signaling pathways indicating the complex nature of microRNA-mediated gene regulation during cardiogenesis. We found a significant association between potential target genes and cardiovascular diseases validating a link between fetal cardiac miRNAs and regulation of cardiovascular disease-related genes. These important findings may lay a foundation for further understanding the regulatory mechanisms operative in gene re-programming in the failing heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abu-Issa R, Kirby ML (2007) Heart field: from mesoderm to heart tube. Annu Rev Cell Dev Biol 23:45–68

    Article  CAS  PubMed  Google Scholar 

  • Ai F, Zhang Y, Peng B (2016) miR-20a regulates proliferation, differentiation and apoptosis in P19 cell model of cardiac differentiation by targeting smoothened. Biol Open 5:1260–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  Google Scholar 

  • Beppu H, Malhotra R, Beppu Y et al (2009) BMP type II receptor regulates positioning of outflow tract and remodeling of atrioventricular cushion during cardiogenesis. Dev Biol 331:167–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianchi M, Renzini A, Adamo S, Moresi V (2017) Coordinated actions of microRNAs with other epigenetic factors regulate skeletal muscle development and adaptation. Int J Mol Sci 18:840

    Article  PubMed Central  Google Scholar 

  • Cakstina I, Riekstina U, Boroduskis M et al (2014) Primary culture of avian embryonic heart forming region cells to study the regulation of vertebrate early heart morphogenesis by vitamin A. BMC Dev Biol 14

  • Catalanotto C, Cogoni C, Zardo G (2016) MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci 17:1712

    Article  PubMed Central  Google Scholar 

  • Chen J-F, Wang S, Wu Q et al (2008) Myocardin marks the earliest cardiac gene expression and plays an important role in heart development. Anat Rec Integr Anat Evol Biol 291:1200–1211

    Article  CAS  Google Scholar 

  • Cox EJ, Marsh SA (2014) A systematic review of fetal genes as biomarkers of cardiac hypertrophy in rodent models of diabetes. PLoS One 9:e92903

    Article  PubMed  PubMed Central  Google Scholar 

  • DeCoux A, Lindsey ML, Villarreal F et al (2014) Myocardial matrix metalloproteinase-2: inside out and upside down. J Mol Cell Cardiol 77:64–72

    Article  CAS  PubMed  Google Scholar 

  • Espinoza-Lewis RA, Wang DZ (2012) MicroRNAs in heart development. Curr Top Dev Biol 100:279–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eyras E, Reymond A, Castelo R et al (2005) Gene finding in the chicken genome. BMC Bioinform 6:131

    Article  Google Scholar 

  • George J, Patal S, Wexler D et al (2005) Circulating matrix metalloproteinase-2 but not matrix metalloproteinase-3, matrix metalloproteinase-9, or tissue inhibitor of metalloproteinase-1 predicts outcome in patients with congestive heart failure. Am Heart J 150:484–487

    Article  CAS  PubMed  Google Scholar 

  • Goishi K, Lee P, Davidson AJ et al (2003) Inhibition of zebrafish epidermal growth factor receptor activity results in cardiovascular defects. Mech Dev 120:811–822

    Article  CAS  PubMed  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009a) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Huang J, Min Lu M, Cheng L et al (2009b) Myocardin is required for cardiomyocyte survival and maintenance of heart function. Proc Natl Acad Sci USA 106:18734–18739

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Ren HT, Xiong JL, Gao XC, Sun XH (2017) Identification and characterization of known and novel microRNAs in three tissues of Chinese giant salamander base on deep sequencing approach. Genomics 109(3):258–264

    Article  CAS  PubMed  Google Scholar 

  • Khanaghaei M, Tourkianvalashani F, Hekmatimoghaddam S et al (2016) Circulating miR-126 and miR-499 reflect progression of cardiovascular disease; correlations with uric acid and ejection fraction. Heart Int 11:e1–e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langlois D, Hneino M, Bouazza L et al (2010) Conditional inactivation of TGF-β type II receptor in smooth muscle cells and epicardium causes lethal aortic and cardiac defects. Transgenic Res 19:1069–1082

    Article  CAS  Google Scholar 

  • Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yang Y, Wang L, Qiao S, Lu X, Wu Y, Xu B, Li H, Gu D (2015) Plasma miR-122 and miR-3149 potentially novel biomarkers for acute coronary syndrome. PloS One 10(5):e0125430

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Ridzon D, Wong L, Chen C (2007) Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8(1):166

    Article  PubMed  PubMed Central  Google Scholar 

  • Ludwig N, Leidinger P, Becker K et al (2016) Distribution of miRNA expression across human tissues. Nucleic Acids Res 44:3865–3877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinsen BJ (2005) Reference guide to the stages of chick heart embryology. Dev Dyn 233:1217–1237

    Article  PubMed  Google Scholar 

  • Mi H, Muruganujan A, Thomas PD (2013) PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res 41:D377–D386

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Yadav T, Rani V (2016) Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit Rev Oncol Hematol 98:12–23

    Article  PubMed  Google Scholar 

  • Mok GF, Alrefaei AF, McColl J et al (2015) Chicken as a developmental model. In: eLS, pp 1–8

  • Monzen K, Ito Y, Naito AT et al (2008) A crucial role of a high mobility group protein HMGA2 in cardiogenesis. Nat Cell Biol 10:567–574

    Article  CAS  PubMed  Google Scholar 

  • Nandi SS, Mishra PK (2015) Harnessing fetal and adult genetic reprograming for therapy of heart disease. J Nat Sci 1:4–6

    Google Scholar 

  • Niculescu LS, Simionescu N, Sanda GM, Carnuta MG, Stancu CS, Popescu AC, Popescu MR, Vlad A, Dimulescu DR, Simionescu M, Sima AV, Jeyaseelan K (2015) MiR-486 and miR-92a identified in circulating HDL discriminate between stable and vulnerable coronary artery disease patients. PLoS ONE 10(10):e0140958

    Article  PubMed  PubMed Central  Google Scholar 

  • Proud CG (2004) Ras, PI3-kinase and mTOR signaling in cardiac hypertrophy. Cardiovasc Res 63:403–413

    Article  CAS  PubMed  Google Scholar 

  • Rose BA, Force T, Wang Y (2010) Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 90:1507–1546

    Article  CAS  PubMed  Google Scholar 

  • Ruffalo M, Bar-Joseph Z (2016) Genome wide predictions of miRNA regulation by transcription factors. Bioinformatics 32:i746–i754

    Article  CAS  PubMed  Google Scholar 

  • Rustagi Y, Jaiswal HK, Rawal K, Kundu GC, Rani V (2015) Comparative characterization of cardiac development specific microRNAs: fetal regulators for future. PloS One 10(10):e0139359

    Article  PubMed  PubMed Central  Google Scholar 

  • Samad AF, Nazaruddin N, Murad AM, Jani J, Zainal Z, Ismail I (2018) Deep sequencing and in silico analysis of small RNA library reveals novel miRNA from leaf Persicaria minor transcriptome. 3 Biotech 8:136

    Article  PubMed  Google Scholar 

  • Saxena S, Rustagi Y, Jain A, Dubey S, Rani V (2017a) microRNAs-mediated MMPs regulation: novel mechanism for cardiovascular diseases. Proteases Hum Dis 497–513

  • Saxena S, Jain A, Rani V (2017b) MicroRNA-mediated MMP regulation: current diagnostic and therapeutic strategies for metabolic syndrome. Curr Gene Ther 17:214–227

    Article  CAS  PubMed  Google Scholar 

  • Shukla V, Varghese VK, Kabekkodu SP et al (2017) A compilation of Web-based research tools for miRNA analysis. Brief Funct Genomics 16:249–273

    Article  PubMed  Google Scholar 

  • Srivastava D, Olson EN (2000) A genetic blueprint for cardiac development. Nature 407:221–226

    Article  CAS  PubMed  Google Scholar 

  • van Linthout S, Seeland U, Riad A et al (2008) Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 103:319–327

    Article  PubMed  Google Scholar 

  • van den Akker NMS, Caolo V, Molin DGM (2012) Cellular decisions in cardiac outflow tract and coronary development: an act by VEGF and NOTCH. Differentiation 84:62–78

    Article  PubMed  Google Scholar 

  • Vogler M (2012) BCL2A1: the underdog in the BCL2 family. Cell Death Differ 19:67–74

    Article  CAS  PubMed  Google Scholar 

  • Wang Y (2007) Mitogen-activated protein kinases in heart development and diseases. Circulation 116:1413–1423

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Lu M, Qiu C, Cui Q (2010a) TransmiR: a transcription factor-microRNA regulation database. Nucleic Acids Res 38:D119–D122

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Long B, Zhou J, Li PF (2010b) miR-9 and NFATc3 regulate myocardin in cardiac hypertrophy. J Biol Chem 285:11903–11912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warris S, Boymans S, Muiser I, Noback M, Krijnen W, Nap JP (2014) Fast selection of miRNA candidates based on large-scale pre-computed MFE sets of randomized sequences. BMC Res Notes 7:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Wittig J, Münsterberg A (2016) The early stages of heart development: insights from chicken embryos. J Cardiovasc Dev Dis 3:12

    Article  PubMed Central  Google Scholar 

  • Wong LL, Armugam A, Sepramaniam S et al (2015) Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction. Eur J Heart Fail 17:393–404

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Dong X, Zhou Q et al (2014) MicroRNA expression profiling of heart tissue during fetal development. Int J Mol Med 33:1250–1260

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the research grant awarded to Dr. Vibha Rani by the Department of Biotechnology, Government of India (BT/PR3642/AGR/36/709/2011) and by CSIR (Council of Scientific & Industrial Research, Government of India) File no: 09/1132 (0004)/18-EMR-I to Sharad Saxena. We acknowledge Jaypee Institute of Information Technology (JIIT), for providing the infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibha Rani.

Ethics declarations

Conflict of interest

There is no conflict of interest between the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, S., Gupta, A., Shukla, V. et al. Functional annotation of differentially expressed fetal cardiac microRNA targets: implication for microRNA-based cardiovascular therapeutics. 3 Biotech 8, 494 (2018). https://doi.org/10.1007/s13205-018-1520-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1520-8

Keywords