Chen L, Gu W, Xu H, Yang G, Shan X, Chen G, Wang CF, Qian AD (2018) Complete genome sequence of Bacillus velezensis 157 isolated from Eucommia ulmoides with pathogenic bacteria inhibiting and lignocellulolytic enzymes production by SSF. 3 Biotech 8(2):114. https://doi.org/10.1007/s13205-018-1326-8
Article
PubMed
Google Scholar
de Gonzalo G, Colpa DI, Habib MH, Fraaije MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119. https://doi.org/10.1016/j.jbiotec.2016.08.011
CAS
Article
PubMed
Google Scholar
Dunlap CA, Kim S, Kwon S, Rooney AP (2016) Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int J Syst Evol Micr 66(3):1212–1217. https://doi.org/10.1099/ijsem.0.000858
CAS
Article
Google Scholar
Dutta N, Mukhopadhyay A, Dasgupta AK, Chakrabarti K (2014) Improved production of reducing sugars from rice husk and rice straw using bacterial cellulase and xylanase activated with hydroxyapatite nanoparticles. Bioresour Technol 153:269–277. https://doi.org/10.1016/j.biortech.2013.12.016
CAS
Article
PubMed
Google Scholar
Fan B, Blom J, Klenk HP, Borriss R (2017) Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “Operational group B. amyloliquefaciens” within the B. subtilis species complex. Front Microbiol 8:22. https://doi.org/10.3389/fmicb.2017.00022
Article
PubMed
PubMed Central
Google Scholar
Glaser R (2015) Enzyme-based lignocellulose hydrolyzation—Sauter mean diameter of raw materials as a basis for cellulase performance characterization and yield prediction. J Biotechnol 214:9–16. https://doi.org/10.1016/j.jbiotec.2015.08.024
CAS
Article
PubMed
Google Scholar
Gong G, Kim S, Lee SM, Woo HM, Park TH, Um Y (2017) Complete genome sequence of Bacillus sp. 275, producing extracellular cellulolytic, xylanolytic and ligninolytic enzymes. J Biotechnol 254:59–62. https://doi.org/10.1016/j.jbiotec.2017.05.021
CAS
Article
PubMed
Google Scholar
Hongoh Y (2010) Diversity and genomes of uncultured microbial symbionts in the termite gut. Biosci Biotechnol Biochem 74(6):1145–1151. https://doi.org/10.1271/bbb.100094
CAS
Article
PubMed
Google Scholar
Khelil O, Choubane S, Cheba BA (2016) Polyphenols content of spent coffee grounds subjected to physico-chemical pretreatments influences lignocellulolytic enzymes production by Bacillus sp. R2. Bioresour Technol 211:769–773. https://doi.org/10.1016/j.biortech.2016.03.112
CAS
Article
PubMed
Google Scholar
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27(5):722–736. https://doi.org/10.1101/gr.215087.116
CAS
Article
PubMed
PubMed Central
Google Scholar
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054
CAS
Article
Google Scholar
Mansour AA, Da CA, Arnaud T, Lu-Chau TA, Fdz-Polanco M, Moreira MT, Cacho RJ (2016) Review of lignocellulolytic enzyme activity analyses and scale-down to microplate-based assays. Talanta 150:629–637. https://doi.org/10.1016/j.talanta.2015.12.073
CAS
Article
PubMed
Google Scholar
McArthur AG, Waglechner N, Nizam F et al (2013) The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 57(7):3348–3357. https://doi.org/10.1128/AAC.00419-13
CAS
Article
PubMed
PubMed Central
Google Scholar
Sheng P, Huang S, Wang Q, Wang A, Zhang H (2012) Isolation, screening, and optimization of the fermentation conditions of highly cellulolytic bacteria from the hindgut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). Appl Biochem Biotechnol 167(2):270–284. https://doi.org/10.1007/s12010-012-9670-3
CAS
Article
PubMed
Google Scholar
Sheng P, Xu J, Saccone G, Li K, Zhang H (2014) Discovery and characterization of endo-xylanase and beta-xylosidase from a highly xylanolytic bacterium in the hindgut of Holotrichia parallela larvae. J Mol Catal B-Enzym 105:33–40. https://doi.org/10.1016/j.molcatb.2014.03.019
CAS
Article
Google Scholar
Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44(14):6614–6624. https://doi.org/10.1093/nar/gkw569
CAS
Article
PubMed
PubMed Central
Google Scholar
Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43(4):777–780
CAS
PubMed
PubMed Central
Google Scholar
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM (2014) Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. Plos One 9(11):e112963. https://doi.org/10.1371/journal.pone.0112963
CAS
Article
PubMed
PubMed Central
Google Scholar
Wilson DB (2011) Microbial diversity of cellulose hydrolysis. Curr Opin Microbiol 14(3):259–263. https://doi.org/10.1016/j.mib.2011.04.004
CAS
Article
Google Scholar
Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110(10):1281–1286. https://doi.org/10.1007/s10482-017-0844-4
CAS
Article
PubMed
Google Scholar
Zhang H, Jackson TA (2008) Autochthonous bacterial flora indicated by PCR-DGGE of 16S rRNA gene fragments from the alimentary tract of Costelytra zealandica (Coleoptera: Scarabaeidae). J Appl Microbiol 105(5):1277–1285. https://doi.org/10.1111/j.1365-2672.2008.03867.x
CAS
Article
PubMed
Google Scholar