Skip to main content
Log in

Agro-morphological description, genetic diversity and population structure of sugarcane varieties from sub-tropical India

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Genetic diversity in 92 sugarcane varieties of sub-tropical India was assessed using 30 morphological descriptors and 643 simple sequence repeat (SSR) marker loci. Out of the 30 morphological descriptors, 14 were found polymorphic, and significant variability was recorded for plant height, cane diameter and number of millable canes. Grouping traits like plant growth habit, leaf blade curvature and leaf sheath adherence were found to be predominantly monomorphic. There were a few pairs of varieties (e.g., CoP 9702 and CoP 9302, CoP 9301 and CoSe 01424, UP 05 and Co 1336, CoS 96258 and CoH 110) that showed similar DUS profiles except differing for a few descriptors. The STRUCTURE profile suggest that all the 92 sugarcane varieties had admixtures and no sub-group had a pure unblemished structure profile. An average Nei’s genetic distance of 0.49 was found to be a better measure of diversity, whereas, the average band informativeness (Ibav) value of all the 80 SSR primers was 0.434. Although, the mean Ibav values for EST-SSR and genomic-SSR primers were same (0.43), the range of Ibav of EST-SSR (0.04–0.85) was more compared to genomic-SSR (0.12–0.63) primers. The segregation of the varieties based on morphological traits was not in accordance with their geographical distribution or maturity groups, but principal component analysis was able to group the sugarcane varieties that had similar pedigree together. Results indicate that the SSRs have a potential use in the DNA fingerprinting of varieties to prevent any malpractice like unauthorised re-registration of a previously registered sugarcane variety under PPV&FR Act. The marker profiles could also be utilised for variety identification and release, since at present, it has been made mandatory to include it in addition to the morphological descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aitken K, Jackson P, McIntyre C (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor Appl Genet 110:789–801

    Article  CAS  PubMed  Google Scholar 

  • Aitken KS, Li JC, Jackson P, Piperidis G, McIntyre CL (2006) AFLP analysis of genetic diversity within Saccharum officinarum and comparison with sugarcane cultivars. Aust J Agric Res 57:1167–1184

    Article  CAS  Google Scholar 

  • Allen CJ, Mackay MJ, Aylward JH, Campbell JA (1997) New technologies for sugar milling and by-product modification. In: Keating BA, Wilson JR (eds) Intensive sugarcane production: meeting the challenges beyond 2000. CAB International, Wallingford, pp 267–285

    Google Scholar 

  • Alwala S, Kimbeng CA, Veremis JC, Gravois KA (2008) Linkage mapping and genome analysis in a Saccharum interspecific cross using AFLP, SRAP and TRAP markers. Euphytica 164:37–51

    Article  CAS  Google Scholar 

  • Andru S, Pan YB, Thongthawee S, Burner DM, Kimbeng CA (2011) Genetic analysis of the sugarcane (Saccharum spp.) cultivar “LCP 85–384”. I. Linkage mapping using AFLP, SSR, and TRAP markers. Theor Appl Genet 123:77–93

    Article  PubMed  Google Scholar 

  • Anonymous (2009) Specific DUS test guidelines for three notified crops, PPV&FRA, publication no. SG/16/2009. Plant Variety J India 3(9):42–54

    Google Scholar 

  • Anonymous (2016) Agricultural statistics at a glance-2016, http://eands.dacnet.nic.in/. Accessed 22 Jan 2018

  • Besse P, Taylor G, Carroll B, Berding N, Burner D, McIntyre CL (1998) Assessing genetic diversity in a sugarcane germplasm collection using an automated AFLP analysis. Genetica 104:143–153

    Article  CAS  PubMed  Google Scholar 

  • Boc A, Makarenkov V (2012) T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks. Nucl Acids Res 40:573–579

    Article  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Breyne P, Boerjan W, Gerats T, Van Montagu M, Gysel A (1997) Application of AFLP in plant breeding, molecular biology and genetics. Belg J Bot 129:107–117

    Google Scholar 

  • Cai Q, Aitken KS, Fan YH, Piperidis G, Jackson P, McIntyre CL (2005) A preliminary assessment of the genetic relationship between Erianthus rockii and the Saccharum complex using microsatellite (SSR) and AFLP markers. Plant Sci 169:976–984

    Article  CAS  Google Scholar 

  • Casu RE, Manners JM, Bonnett GD, Jackson PA, McIntyre CL, Dunne R, Chapman SC, Rae AL, Grof CPL (2005) Genomics approaches for the identification of genes determining important traits in sugarcane. Field Crops Res 92:137–147

    Article  Google Scholar 

  • Chang D, Yang FY, Yan JJ, Wu YQ, Bai SQ, Liang XZ, Zhang YW, Gan YM (2012) SRAP analysis of genetic diversity of nine native populations of wild sugarcane, Saccharum spontaneum, from Sichuan, China. Genet Mol Res 11:1245–1253

    Article  CAS  PubMed  Google Scholar 

  • Cooke RJ (1995) Gel electrophoresis for the identification of plant varieties. J Chromatogr 698:281–299

    Article  CAS  Google Scholar 

  • Creste S, Sansoli DM, Tardiani ACS, Silva DN, Goncalves FK, Favero TM, Medeiros CNF, Festucci CS, Carlini-Garcia LA, Landell MGA, Pinto LR (2010) Comparison of AFLP, TRAP and SSRs in the estimation of genetic relationships in sugarcane. Sugar Tech 12:150–154

    Article  CAS  Google Scholar 

  • D’Hont A, Ison D, Alix K, Roux C, Glaszmann JC (1998) Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41:221–225

    Article  Google Scholar 

  • daCosta MLM, Amorim LLB, Onofre AV, deMelo LJT, deOliveira MBM, deCarvalho R, Benko-Iseppon AM (2011) Assessment of genetic diversity in contrasting sugarcane varieties using inter-simple sequence repeat (ISSR) markers. Am J Plant Sci 2(3):425–432

    Article  CAS  Google Scholar 

  • Dey SS, Singh AK, Chandel D, Behera TK (2006) Genetic diversity of bitter gourd (Momordica charantia L.) genotypes revealed by RAPD markers and agronomic traits. Sci Hortic 109(1):21–28

    Article  CAS  Google Scholar 

  • Dias MOS, Tassia LJ, Otávio C, Cunha MP, Jesus CDF, Rossell CEV, Filho RM, Bonomi A (2012) Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresour Technol 103(1):152–161

    Article  CAS  PubMed  Google Scholar 

  • dosSantos JM, Duarte Filho LSC, Soriano ML, daSilva PP, Nascimento VX, deSouza Barbosa GV, Almeida C (2012) Genetic diversity of the main progenitors of sugarcane from the RIDESA germplasm bank using SSR markers. Ind Crop Prod 40:145–150

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–14

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Govindaraj P, Balasundaram N, Sharma TR, Bansal KC, Koundal KR, Singh NK (2005) Development of new STMS markers for sugarcane. Sugarcane Breeding Institute, Coimbatore, Tamilnadu, India. http://www.nrcpb.org/content/development-new-stms-markers-sugarcane. Accessed 25 July 2009

  • Heinz DJ, Tew TL (1987) Hybridization procedures. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 313–342

    Chapter  Google Scholar 

  • Hogarth DM (1987) Genetics of sugarcane. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 255–271

    Chapter  Google Scholar 

  • IBM Corp. Released (2011) IBM SPSS statistics for windows, ver. 20.0. IBM Corp, Armonk

    Google Scholar 

  • Jarne P, Lagoda PJ (1996) Microsatellites, from molecules to populations and back. Trends Ecol Evol 11(10):424–429

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Yadav S, Srivastava S, Swapna M, Chandra A, Singh RK (2011) Development and utilisation of conserved-intron scanning marker in sugarcane. Aust J Bot 59(1):38–45

    Article  Google Scholar 

  • Khan MS, Kumar S, Singh RK, Singh J, Duttamajumder SK, Kapur R (2018) Characterization of leaf transcriptome, development and utilization of unigenes-derived microsatellite markers in sugarcane (Saccharum sp. hybrid). Physiol Mol Biol Plants 24(4):665–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Mao J, Lu X, Ma L, Aitken KS, Jackson PA, Cai Q, Fan Y (2010) Construction of molecular genetic linkage map of sugarcane based on SSR and AFLP markers. Acta Agron Sin 36(1):177–183

    Article  CAS  Google Scholar 

  • Maccheroni W, Jordao H, De Gaspari R, De Moura GL, Matsuoka S (2009) Development of a dependable microsatellite-based fingerprinting system for sugarcane. Sugar Cane Int 27(2):47–52

    CAS  Google Scholar 

  • Marconi TG, Costa EA, Miranda HR, Mancini MC, Cardoso-Silva CB, Oliveira KM, Pinto LR, Mollinari M, Garcia AA, Souza AP (2011) Functional markers for gene mapping and genetic diversity studies in sugarcane. BMC Res Notes 4(1):264

    Article  PubMed  PubMed Central  Google Scholar 

  • McCouch SR, Chen XL, Panaud O, Temnykh S, Xu YB, Cho YG, Huang N, Ishii T, Blair M (1997) Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol 35:89–99

    Article  CAS  PubMed  Google Scholar 

  • Milbourne D, Meyer R, Bradshaw JE, Baird E, Bonar N, Provan J, Powell W, Waugh R (1997) Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Mol Breed 3:127–136

    Article  CAS  Google Scholar 

  • Ming R, Moore PH, Wu K, D-Hont A, Glaszmann JC, Tew TL, Mirkov TE, DaSilva J, Jifon J, Rai M, Schnell RJ (2010) Sugarcane improvement through breeding and biotechnology. Plant Breed Rev 27:15–118

    Article  Google Scholar 

  • Nawaz S, Khan FA, Tabasum S, Zakria M, Saeed A, Iqbal MZ (2010) Phylogenetic relationships among Saccharum clones in Pakistan revealed by RAPD markers. Genet Mol Res 9(3):1673–1682

    Article  CAS  PubMed  Google Scholar 

  • Nayak SN, Song J, Villa A, Pathak B, Ayala-Silva T, Yang X, Todd J, Glynn NC, Kuhn DN, Glaz B, Gilbert RA, Comstock JC (2014) Promoting utilization of Saccharum spp. genetic resources through genetic diversity analysis and core collection construction. PLoS One 9(10):1–10

    Article  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106(949):283–292

    Article  Google Scholar 

  • Noli E, Teriaca MS, Sanguineti Conti S (2008) Utilization of SSR and AFLP markers for the assessment of distinctness in durum wheat. Mol Breed 22:301–313

    Article  CAS  Google Scholar 

  • Oliveira KM, Pinto LR, Marconi TG, Mollinari M, Ulian EC (2009) Characterization of new polymorphic functional markers for sugarcane. Genome 52:191–209

    Article  CAS  PubMed  Google Scholar 

  • Pan YB (2006) Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing. Sugar Tech 8(4):246–256

    Article  CAS  Google Scholar 

  • Pan YB (2010) Databasing molecular identities of sugarcane (Saccharum spp.) clones constructed with microsatellite (SSR) DNA markers. Am J Plant Sci 1(2):87–94

    Article  CAS  Google Scholar 

  • Pan YB, Miller JD, Schnell RJ, Richard EP, Wei Q (2003) Application of microsatellite and RAPD fingerprints in the Florida sugarcane variety program. Int Sugar J March/April:19–24

    Google Scholar 

  • Parida SK, Kalia SK, Kaul S, Dalal V, Hemaprabha G (2009) Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theor Appl Genet 118:327–338

    Article  CAS  PubMed  Google Scholar 

  • Pinto LR, Oliveira KM, Ulian EC, Garcia AA, deSouza AP (2004) Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome 47:795–804

    Article  CAS  PubMed  Google Scholar 

  • Pinto LR, Garcia AAF, Pastina MM, Teixeira LHM, Bressiani JA, Ulian EC, Souza AP (2010) Analysis of genomic and functional RFLP derived markers associated with sucrose content, fiber and yield QTLs in a sugarcane (Saccharum spp.) commercial cross. Euphytica 172(3):313–327

    Article  CAS  Google Scholar 

  • Pourabed E, Noushabadi JMR, Jamali SH, Alipour MN, Zareyan A, Sadeghi L (2015) Identification and DUS testing of rice varieties through microsatellite markers. Int J Plant Genomics. https://doi.org/10.1155/2015/965073 (Article ID 965073)

    Article  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multi-locus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Que YX, Pan YB, Lu YH, Yang C, Yang YT, Huang N, Xu LP (2014) Genetic analysis of diversity within a Chinese local sugarcane germplasm based on start codon targeted polymorphism. BioMed Res Int 2014:468375. https://doi.org/10.1155/2014/468375

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan M, Ceasar SA, Duraipandiyan V, Al-Dhabi N, Ignacimuthu S (2015) Using molecular markers to assess the genetic diversity and population structure of finger millet (Eleusine coracana (L.) Gaertn.) from various geographical regions. Genet Resour Crop Evol 63(2):1–16

    Google Scholar 

  • Riday H, Brummer EC, Campbell TA, Luth D, Cazcarro PM (2003) Comparisons of genetic and morphological distance with heterosis between Medicago sativa subsp. sativa and subsp. falcata. Euphytica 131(1):37–45

    Article  CAS  Google Scholar 

  • Rosenberg MS, Anderson CD (2011) PASSaGE: pattern analysis, spatial statistics and geographic exegesis. Version 2. Methods Ecol Evol 2(3):229–232

    Article  Google Scholar 

  • Silva CM, Mangolin CA, Mott AS, Machado MFPS (2008) Genetic diversity associated with in vitro and conventional bud propagation of Saccharum varieties using RAPD analysis. Plant Breed 127(2):160–165

    Article  Google Scholar 

  • Silva DC, Filho LS, Costa D, Santos JMD, Barbosa G, deSouza V, deCícero A (2012) DNA fingerprinting based on simple sequence repeat (SSR) markers in sugarcane clones from the breeding program RIDESA. Afr J Biotechnol 11(21):4722–4728

    CAS  Google Scholar 

  • Singh RK, Mishra SK, Singh SP, Mishra N, Sharma ML (2010) Evaluation of microsatellite markers for genetic diversity analysis among sugarcane species and commercial hybrids. Aust J Crop Sci 4(2):115–124

    Google Scholar 

  • Singh RK, Khan MS, Singh R, Pandey DK, Kumar S, Lal S (2011) Analysis of genetic differentiation and phylogenetic relationships among sugarcane genotypes differing in response to red rot. Sugar Tech 13(2):137–144

    Article  Google Scholar 

  • Singh RK, Jena SN, Khan S, Yadav S, Banarjee N, Raghuvanshi S, Bhardwaj V, Dattamajumder SK, Kapur R, Solomon S, Swapna M, Srivastava S, Tyagi AK (2013) Development, cross-species/genera transferability of novel EST-SSR markers and their utility in revealing population structure and genetic diversity in sugarcane. Gene 524:309–329

    Article  CAS  PubMed  Google Scholar 

  • Tai PYP (1989) Progress and problems of intergeneric hybridization in sugarcane breeding. Proc Inter Am Sugarcane Sem 1:391–395

    Google Scholar 

  • Tew TL, Pan YB (2010) Microsatellite (simple sequence repeat) marker-based paternity analysis of a seven-parent sugarcane polycross. Crop Sci 50(4):1401–1408

    Article  CAS  Google Scholar 

  • UPOV-BMT (2002) BMT/36/10 progress report of the 36th session of the technical committee, the technical working parties and working group on biochemical and molecular techniques and DNA-profiling in particular, Geneva

  • Walker DIT (1987) Manipulating the genetic base of sugarcane. In: Copersucar international sugarcane breed workshop, Copersucar, Sao Paulo, pp 321–334

  • XLSTAT (2017) Data analysis and statistical solution for Microsoft Excel. Addinsoft, Paris

    Google Scholar 

  • Xu ML, Melchinger AE, Xia XC, Lubberstedt T (1999) High-resolution mapping of loci conferring resistance to sugarcane mosaic virus in maize using RFLP, SSR, and AFLP markers. Mol Gen Genet 261:574–581

    Article  CAS  PubMed  Google Scholar 

  • Zawedde BM, Ghislain M, Magembe E, Amaro GB, Grumet R, Hancock J (2014) Characterization of the genetic diversity of Uganda’s sweet potato (Ipomoea batatas) germplasm using microsatellites markers. Genet Resour Crop Evol 62:501–513

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by a research grant from Protection of Plant Varieties and Farmers’ Rights Authority, Government of India (PPV&FRA/Reg/19-5/DUS/2012) in the form of a project on DUS Testing under Central Sector Scheme for Implementation of PVP legislation, and from Department of Biotechnology (DBT), Government of India as a BioCARe Project. The authors are thankful to the Director, ICAR-Indian Institute of Sugarcane Research, Lucknow for providing infrastructure facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotsnendra Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siraree, A., Banerjee, N., Kumar, S. et al. Agro-morphological description, genetic diversity and population structure of sugarcane varieties from sub-tropical India. 3 Biotech 8, 469 (2018). https://doi.org/10.1007/s13205-018-1481-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1481-y

Keywords

Navigation