Skip to main content

Advertisement

Log in

Growth, substrate consumption, and product formation kinetics of Phanerochaete chrysosporium and Schizophyllum commune mixed culture under solid-state fermentation of fruit peels

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Kinetic analysis of solid-state fermentation (SSF) of fruit peels with Phanerochaete chrysosporium and Schizophyllum commune mixed culture was studied in flask and 7 kg capacity reactor. Modified Monod kinetic model suggested by Haldane sufficiently described microbial growth with co-efficient of determination (R2) reaching 0.908 at increased substrate concentration than the classical Monod model (R2 = 0.932). Leudeking–Piret model adequately described product synthesis in non-growth-dependent manner (R2 = 0.989), while substrate consumption by P. chrysosporium and S. commune fungal mixed culture was growth-dependent (R2 = 0.938). Hanes–Woolf model sufficiently represented α-amylase and cellulase enzymes synthesis (R2 = 0.911 and 0.988); α-amylase had enzyme maximum velocity (Vmax) of 25.19 IU/gds/day and rate constant (Km) of 11.55 IU/gds/day, while cellulase enzyme had Vmax of 3.05 IU/gds/day and Km of 57.47 IU/gds/day. Product yield in the reactor increased to 32.65 mg/g/day compared with 28.15 mg/g/day in shake flask. 2.5 cm media thickness was adequate for product formation within a 6 day SSF in the tray reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adney B, Nrel JB (2008) Measurement of cellulase activities laboratory analytical procedure (LAP). Renew Energy 26:1–8

    Google Scholar 

  • Aggelopoulos T, Katsieris K, Bekatorou A et al (2014) Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production. Food Chem 145:710–716

    Article  CAS  Google Scholar 

  • Alam M, Muhammad N, Mahmat M (2005) Production of cellulase from oil palm biomass as substrate by solid state bioconversion. Am J Appl Sci 2:569–572

    Article  CAS  Google Scholar 

  • Alemu T (2013) Process of optimization and characterization of protein enrichment of orange wastes through solid state fermentation by Aspergillus niger isolate no. 5. J Biol Sci 13:341–348

    Article  CAS  Google Scholar 

  • Andrews JF (1968) A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol Bioeng 10:707–723

    Article  CAS  Google Scholar 

  • Arora DS, Sharma RK (2011) Effect of different supplements on bioprocessing of wheat straw by Phlebia brevispora: changes in its chemical composition, in vitro digestibility and nutritional properties. Bioresour Technol 102:8085–8091

    Article  CAS  Google Scholar 

  • Arumugam R, Manikandan M (2011) Fermentation of pretreatedd hydrolyzatess of banana and mango fruit wastes for ethanol production. Asian J Exp Biol Sci 2:246–256

    CAS  Google Scholar 

  • Chelliappan B (2013) Production and optimization of growth conditions for invertase enzyme by Apergillus sp., in solid state fermentation (SSF). J Microbiol Biotechnol Food Sci 3:266–269

    CAS  Google Scholar 

  • Chen GC, Johnson BR (1983) Improved colorimetric determination of cell wall chitin in wood decay fungi. Appl Environ Microbiol 46:13–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Roman M (2010) The contribution of wild fungi to diet, income and health: a world review. In: Rai M, Kövics G (eds) Progress in mycology. Springer Netherlands, Dordrecht, pp 327–348

    Chapter  Google Scholar 

  • Dhillon GS, Oberoi HS, Kaur S et al (2011) Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind Crops Prod 34:1160–1167

    Article  CAS  Google Scholar 

  • Díaz AB, de Ory I, Caro I, Blandino A (2012) Enhance hydrolytic enzymes production by Aspergillus awamori on supplemented grape pomace. Food Bioprod Process 90:72–78

    Article  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Gad AS, Hasan EA, Aziz AA El (2010) Utilization of Opuntia ficus indica waste for production of Phanerochaete chrysosporium bioprotein. J Am Sci 6:208–216

    Google Scholar 

  • Ghori M, Ahmed S, Malana M, Jamil A (2012) Kinetics of exoglucanase and endoglucanase produced by Aspergillus niger NRRL 567. Afr J Biotechnol 11:7227–7231

    CAS  Google Scholar 

  • Govumoni SP, Gentela J, Koti S et al (2015) Extracellular lignocellulolytic enzymes by Phanerochaete chrysosporium (MTCC 787) under solid-state fermentation of agro wastes. Int J Curr Microbiol App Sci 4:700–710

    CAS  Google Scholar 

  • Gupta A, Jana AK (2018) Effects of wheat straw solid contents in fermentation media on utilization of soluble/insoluble nutrient, fungal growth and laccase production. 3 Biotech 8:35

    Article  Google Scholar 

  • Jamal P, Tijani RID, Alam M et al (2012) Effect of operational parameters on solid state fermentation of cassava peel to an enriched animal feed. J Appl Sci 12:1166–1170

    Article  CAS  Google Scholar 

  • Jamal P, Saheed OK, Alam MZ et al (2014) Protein enrichment through synergistic activities of fruit wastes using white rot fungi under submerged state bioconversion. J Pure Appl Microbiol 8:839–844

    Google Scholar 

  • Jamal P, Saheed OK, Jaswir I, Ruqayyah TID (2015) Bioconversion of seaweed with white rot fungi for production of protein enriched fish feedstock. J Teknol 77:1–6

    Google Scholar 

  • Juhász T, Kozma K, Szengyel Z, Réczey K (2003) Production of b-glucosidase in mixed culture of Aspergillus niger BKMF 1305 and Trichoderma reesei RUT C30. Food Technol Biotechnol 41:49–53

    Google Scholar 

  • Linville JL, Rodriguez M, Mielenz JR, Cox CD (2013) Kinetic modeling of batch fermentation for Populus hydrolysate tolerant mutant and wild type strains of Clostridium thermocellum. Bioresour Technol 147:605–613

    Article  CAS  Google Scholar 

  • Lizardi-Jiménez MA, Hernández-Martínez R (2017) Solid state fermentation (SSF): diversity of applications to valorize waste and biomass. 3 Biotech 7:44

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mahanama R, Berenjian A, Talbot A et al (2011) Effects of inoculation loading and substrate bed thickness on the production of menaquinone 7 via solid state fermentation. Cardiovasc Disord 2:19–22

    Google Scholar 

  • Manikandan K, Saravanan V, Viruthagiri T (2008) Kinetics studies on ethanol production from banana peel waste using mutant strain of Saccharomyces cerevisiae. Indian J Biotechnol 7:83–88

    CAS  Google Scholar 

  • Matsakas L, Kekos D, Loizidou M, Christakopoulos P (2014) Utilization of household food waste for the production of ethanol at high dry material content. Biotechnol Biofuels 7:2–9

    Article  Google Scholar 

  • Melikoglu M, Lin CSK, Webb C (2013) Stepwise optimisation of enzyme production in solid state fermentation of waste bread pieces. Food Bioprod Process 91:638–646

    Article  CAS  Google Scholar 

  • Mfombep PM, Senwo ZN, Isikhuemhen OS (2013) Enzymatic activities and kinetic properties of β-glucosidase from selected white rot fungi. Adv Biol Chem 3:198–207

    Article  CAS  Google Scholar 

  • Miller G (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Mishra V, Jana AK, Jana MM, Gupta A (2017) Fungal pretreatment of sweet sorghum bagasse with supplements: improvement in lignin degradation, selectivity and enzymatic saccharification. 3 Biotech 7:110

    Article  Google Scholar 

  • Mullai P, Rene ER, Sridevi K (2013) Biohydrogen production and kinetic modeling using sediment microorganisms of Picharavam Mangroves, India. Biomed Res Int 2013:9

    Article  Google Scholar 

  • Nath K, Das D (2011) Modeling and optimization of fermentative hydrogen production. Bioresour Technol 102:8569–8581

    Article  CAS  Google Scholar 

  • Onofre SB, Groff SA, Sartori A et al (2012) Production of α-amylase and amyloglucosidase by the fungus Cylindrocladium sp. in semi-solid state fermentation. J Microbiol Res 2:123–126

    Article  Google Scholar 

  • Pandit NP, Maheshwari SK (2012) Optimization of cellulase enzyme production from sugarcane pressmud using oyster mushroom—Pleurotus Sajor-Caju by solid state fermentation. J Bioremediat Biodegrad 3:1–5

    Article  Google Scholar 

  • Raghavarao KSM, Ranganathan T, Karanth N (2003) Some engineering aspects of solid-state fermentation. Biochem Eng J 13:127–135

    Article  CAS  Google Scholar 

  • Ravi R, Philip L, Swaminathan T (2013) Growth kinetics of an indigenous mixed microbial consortium during methylene chloride degradation in a batch reactor. Korean J Chem Eng 30:1770–1774

    Article  CAS  Google Scholar 

  • Ruqayyah TID, Jamal P, Alam Z, Mirghani ES (2011) Valorization of cassava peels by the white rot fungus Panus tigrinus M609RQY. Aust J Basic Appl Sci 5:808–816

    CAS  Google Scholar 

  • Ruqayyah TID, Jamal P, Alam MZ, Mirghani MES (2013) Biodegradation potential and ligninolytic enzyme activity of two locally isolated Panus tigrinus strains on selected agro-industrial wastes. J Environ Manag 118:115–121

    Article  CAS  Google Scholar 

  • Saheed O, Jamal P, Karim M (2013a) Cellulolytic fruits wastes: a potential support for enzyme assisted protein production. J Biol Sci 13:379–385

    Article  CAS  Google Scholar 

  • Saheed OK, Jamal P, Abdul Karim MI et al (2013b) Cellulolytic fruits wastes: a potential support for enzyme assisted protein production. J Biol Sci 13:379–385

    Article  CAS  Google Scholar 

  • Sethi BK, Nanda PK, Sahoo S (2016) Enhanced production of pectinase by Aspergillus terreus NCFT 4269.10 using banana peels as substrate. 3 Biotech 6:36

    Article  Google Scholar 

  • Shi J, Sharma-shivappa RR, Chinn MS (2012) Enzyme and microbial technology interactions between fungal growth, substrate utilization and enzyme production during shallow stationary cultivation of Phanerochaete chrysosporium on cotton stalks. Enzyme Microb Technol 51:1–8

    Article  CAS  Google Scholar 

  • Shi J, Chinn MS, Sharma-Shivappa RR (2014) Interactions between fungal growth, substrate utilization, and enzyme production during solid substrate cultivation of Phanerochaete chrysosporium on cotton stalks. Bioprocess Biosyst Eng 37:2463–2473

    Article  CAS  Google Scholar 

  • Singh nee’ Nigam P, Pandey A (eds) (2009) Solid-state fermentation technology for bioconversion of biomass and agricultural residues. Biotechnology for agro-industrial residues utilisation. Springer, Netherlands, Dordrecht, pp 197–221

  • Song H, Eom M-H, Lee S et al (2010) Modeling of batch experimental kinetics and application to fed-batch fermentation of Clostridium tyrobutyricum for enhanced butyric acid production. Biochem Eng J 53:71–76

    Article  CAS  Google Scholar 

  • Sornlake W, Rattanaphanjak P, Champreda V et al (2017) Characterization of cellulolytic enzyme system of Schizophyllum commune mutant and evaluation of its efficiency on biomass hydrolysis. Biosci Biotechnol Biochem 81:1289–1299

    Article  CAS  Google Scholar 

  • Spier MR, Junior Letti LA, Woiciechowski AL, Soccol CR (2009) A simplified model for A. Niger FS3 growth during phytase formation in solid state fermentation. Braz Arch Biol Technol 52:151–158

    Article  Google Scholar 

  • Surendhiran D, Vijay M, Sivaprakash B, Sirajunnisa A (2014) Kinetic modeling of microalgal growth and lipid synthesis for biodiesel production. 3 Biotech 5:663–669

    Article  Google Scholar 

  • Zhang YY, Liu JH, Zhou YM et al (2013) A new two-phase kinetic model of sporulation of Clonostachys rosea in a new solid-state fermentation reactor. Process Biochem 48:1119–1125

    Article  CAS  Google Scholar 

  • Zhu N, Liu J, Yang J et al (2016) Comparative analysis of the secretomes of Schizophyllum commune and other wood-decay basidiomycetes during solid-state fermentation reveals its unique lignocellulose-degrading enzyme system. Biotechnol Biofuels 9:42

    Article  Google Scholar 

Download references

Acknowledgements

The investigators would like to thank Research Management Center of International Islamic University Malaysia for their financial support in making this work a reality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kola Saheed Olorunnisola.

Ethics declarations

Conflict of interest

There are no financial/commercial or any other conflicts of interest among authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olorunnisola, K.S., Jamal, P. & Alam, M. Growth, substrate consumption, and product formation kinetics of Phanerochaete chrysosporium and Schizophyllum commune mixed culture under solid-state fermentation of fruit peels. 3 Biotech 8, 429 (2018). https://doi.org/10.1007/s13205-018-1452-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1452-3

Keywords

Navigation