Skip to main content
Log in

Fungal biotransformation of synthetic levodopa to stable dopamine in l-ascorbate-mediated aerobic-thermophilic biochemical process

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In the present study, fungal biotransformation of synthetic levodopa to stable dopamine in an l-ascorbate-mediated thermophilic-aerobic biochemical reaction was investigated. A mutant strain of Aspergillus oryzae EMS-6 was used for the preparation of mycelial biomass. The mutant was previously developed through EMS-induced mutagenesis and repressed against l-cysteine HCl. Growth parameters such as rate of cultivation (48 h), initial pH (6) and incubation temperature (30 °C) supported 18.84 g/l biomass with 23 g/l glucose consumption. Thermophilic behaviour of culture was observed at 25–40 °C. Kinetic variables notably µ = 0.385 /h and Qs, exhibited consistent growth pattern. Biochemical reactions were performed aerobically using mycelial biomass as the source of enzyme ‘tyrosinase’ in a digital hotplate equipped with magnetic stirrers. The reaction conditions included 5 mg/ml biomass and 2.5 mg/ml levodopa as basal substrate in a thermophilic reaction of 25 min duration acidified with l-ascorbic acid. TLC and HPLC analysis of reaction mixture confirmed the presence of levodopa and dopamine using a CN-9dth (R) column. Activation enthalpy and entropy of dopa decarboxylase (DDC) and its thermal inactivation showed an improved biotransformation of levodopa to dopamine at the optimal temperature (30 °C) as compared to other temperatures being employed. Overall, 3.68 mg/ml dopamine (4.55 mg/ml proteins) synthesis from 2.38 mg/ml levodopa was accomplished. The enhancement in metabolic activity of the mutant strain is ~ 2.75-fold improved when compared to the unoptimized reaction conditions, which is highly significant (HS) indicating an eco-commercially viable (LSD ~ 0.412) bioprocess.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sikander Ali.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S. Fungal biotransformation of synthetic levodopa to stable dopamine in l-ascorbate-mediated aerobic-thermophilic biochemical process. 3 Biotech 8, 370 (2018). https://doi.org/10.1007/s13205-018-1398-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1398-5

Keywords

Navigation