Skip to main content
Log in

High sequence variation in the exon 10 of TSHR gene is associated with flightless-domestic geese

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The genetic and molecular mechanisms of the flightless birds without limb modification are rarely reported. To explore the possible reasons for losing flight ability without limb modification, we used the domestic geese as an ideal model to preliminarily study the possible mechanisms for this kind of flightlessness. We compared the sequence variations of the exon 10 of TSHR gene between three domesticated geese populations and two wild ancestor populations. The results showed that domestic geese had higher genetic diversity and more complex population structure than their wild ancestors. We did not detect any population expansion in domestic geese population. However, we detected clear relaxed selection signal and positive selection in domesticated geese groups. Furthermore, special phylogenetic relationship of the exon 10 of TSHR was observed in domesticated geese groups. Combined with its well-established function on metabolic regulation and photoperiod control, we speculate that relaxed selection of TSHR might have effects on flightlessness of domesticated geese.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Burga A, Wang W et al (2017) A genetic signature of the evolution of loss of flight in the Galapagos cormorant. Science 356(6341):eaal3345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter GR, Scott-Moncrieff JC et al (2009) Serum total thyroxine and thyroid stimulating hormone concentrations in dogs with behavior problems. J Vet Behav Clin Appl Res 4(6):230–236

    Article  Google Scholar 

  • Darwin C, Bynum WF (2009) The origin of species by means of natural selection: or, the preservation of favored races in the struggle for life. AL Burt

  • De GB, Grommen SV et al (2013) Hatching the cleidoic egg: the role of thyroid hormones. Front Endocrinol 4:63

    Article  Google Scholar 

  • Deelman E, Singh G et al (2005) Pegasus: a framework for mapping complex scientific workflows onto distributed systems. Sci Program 13(3):219–237

    Google Scholar 

  • Ericson PGP, Tyrberg T (2004) The early history of the Swedish avifauna. A review of the subfossil record and early written sources

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser

  • Hanon EA, Lincoln GA et al (2008) Ancestral TSH mechanism signals summer in a photoperiodic mammal. Curr Biol 18(15):1147–1152

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755

    Article  CAS  PubMed  Google Scholar 

  • Kennedy M, Valle CA et al (2009) The phylogenetic position of the Galápagos Cormorant. Mol Phylogenet Evol 53(1):94–98

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G et al (2016) “MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870

    Article  CAS  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Mannermaa K (2014) Goose: domestication. Springer, New York

    Google Scholar 

  • McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS One 8(4):e61217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell KJ, Llamas B et al (2014) Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution. Science 344(6186):898–900

    Article  CAS  PubMed  Google Scholar 

  • Nakao N, Ono H et al (2008) Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature 452(7185):317

    Article  CAS  PubMed  Google Scholar 

  • Pond SLK, Frost SD (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21(10):2531–2533

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M et al (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roff DA (1994) The evolution of flightlessness: is history important?. Evol Ecol 8(6):639–657

    Article  Google Scholar 

  • Rubin CJ, Zody MC et al (2010) Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464(7288):587

    Article  CAS  PubMed  Google Scholar 

  • Shen Y-Y, Shi P et al (2009) Relaxation of selective constraints on avian mitochondrial DNA following the degeneration of flight ability. Genome Res 19(10):1760–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi XW, Wang JW et al (2006) Mitochondrial DNA cleavage patterns distinguish independent origin of Chinese domestic geese and western domestic geese. Biochem Genet 44(5–6):237–245

    Article  CAS  PubMed  Google Scholar 

  • Slack KE, Jones CM et al (2006) Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution. Mol Biol Evol 23(6):1144–1155

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ et al (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(25):4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickham H (2009) plyr: Tools for splitting, applying and combining data. R package version 0(1 9):651

    Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Nos. 31172181 and 31660663) and the National Waterfowl Industrial Technology System (Nos. CARS-43-4 and 2016YFD0500510).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiping Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Q., Wang, Y., Hu, Y. et al. High sequence variation in the exon 10 of TSHR gene is associated with flightless-domestic geese. 3 Biotech 8, 353 (2018). https://doi.org/10.1007/s13205-018-1371-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1371-3

Keywords

Navigation