Skip to main content
Log in

3D bioprinted rat Schwann cell-laden structures with shape flexibility and enhanced nerve growth factor expression

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) bioprinting composite alginate–gelatin hydrogel has encouraged the fabrication of cell-laden functional structures with cells from various tissues. However, reports focusing on printing this hydrogel for nerve tissue research are limited. This study aims at building in vitro Schwann cell 3D microenvironment with customized shapes through 3D bioprinting technology. Rat Schwann cell RSC96s encapsulated in composite alginate–gelatin hydrogel were printed with an extrusion-based bioprinter. Cells maintained high viability of 85.35 ± 6.19% immediately after printing and the printed hydrogel supported long-term Schwann cell proliferation for 2 weeks. Furthermore, after 14 days of culturing, Schwann cells cultured in printed structures maintained viability of 92.34 ± 2.19% and showed enhanced capability of nerve growth factor (NGF) release (142.41 ± 8.99 pg/ml) compared with cells from two-dimensional culture (92.27 ± 9.30 pg/ml). Specific Schwann cell marker S100β was also expressed by cells in printed structures. These printed structures may have the potential to be used as in vitro neurotrophic factor carriers and could be integrated into complex biomimetic artificial structures with the assistance of 3D bioprinting technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Behan BL, Dewitt DG, Bogdanowicz DR et al (2011) Single-walled carbon nanotubes alter Schwann cell behavior differentially within 2D and 3D environments. J Biomed Mater Res Part A 96:46–57

    Article  CAS  Google Scholar 

  • Bunge RP (1991) Schwann cells in central regeneration. Ann N Y Acad Sci 633:229–233

    Article  CAS  PubMed  Google Scholar 

  • Chung JY, Naficy S, Yue Z et al (2013) Bio-ink properties and printability for extrusion printing living cells. Biomater Sci 1:763–773

    Article  CAS  Google Scholar 

  • Dai X, Ma C, Lan Q et al (2016) 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility. Biofabrication 8:045005

    Article  CAS  Google Scholar 

  • England S, Rajaram A, Schreyer DJ et al (2016) Bioprinted fibrin-factor XIII-hyaluronate hydrogel scaffolds with encapsulated Schwann cells and their in vitro, characterization for use in nerve regeneration. Bioprinting 5:1–9

    Article  Google Scholar 

  • Evans GR, Brandt K, Katz S et al (2002) Bioactive poly(L-lactic acid) conduits seeded with Schwann cells or peripheral nerve regeneration. Biomaterials 23:841–848

    Article  CAS  PubMed  Google Scholar 

  • Frostick SP, Yin Q, Kemp GJ (1998) Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery 18:397–405

    Article  CAS  PubMed  Google Scholar 

  • Fu SY, Gordon T (1997) The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol 14:67–116

    Article  CAS  PubMed  Google Scholar 

  • Gungorozkerim PS, Inci I, Zhang YS et al (2018) Bioinks for 3D bioprinting: an overview. Biomater Sci 6:915–946

    Article  CAS  Google Scholar 

  • Gupta D, Venugopal J, Prabhakaran MP et al (2009) Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomater 5:2560–2569

    Article  CAS  PubMed  Google Scholar 

  • Hadlock T, Sundback C, Hunter D et al (2000) A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration. Tissue Eng 6:119–127

    Article  CAS  PubMed  Google Scholar 

  • Hernandez DS, Ritschdorff ET, Seidlits SK et al (2016) Functionalizing micro-3D-printed protein hydrogels for cell adhesion and patterning. J Mater Chem B 4:1818–1826

    Article  CAS  Google Scholar 

  • Hospodiuk M, Dey M, Sosnoski D et al (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 35:217–239

    Article  CAS  PubMed  Google Scholar 

  • Hurtado A, Moon LD, Maquet V et al (2006) Poly (d,l-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord. Biomaterials 27:430–442

    Article  CAS  PubMed  Google Scholar 

  • Krampera M, Marconi S, Pasini A et al (2007) Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone 40:382–390

    Article  CAS  PubMed  Google Scholar 

  • Li G, Zhao Y, Zhang L et al (2016) Preparation of graphene oxide/polyacrylamide composite hydrogel and its effect on Schwann cells attachment and proliferation. Colloids Surf B Biointerfaces 143:547–556

    Article  CAS  PubMed  Google Scholar 

  • Melchels FPW, Domingos MAN, Klein TJ et al (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37:1079–1104

    Article  CAS  Google Scholar 

  • Mosahebi A, Simon M, Wiberg M et al (2001) A novel use of alginate hydrogel as Schwann cell matrix. Res J Appl Sci Eng Technol 7:525–534

    CAS  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785

    Article  CAS  PubMed  Google Scholar 

  • Ning L, Xu Y, Chen X et al (2016a) Influence of mechanical properties of alginate-based substrates on the performance of Schwann cells in culture. J Biomater Sci Polym Ed 27:898–915

    Article  CAS  PubMed  Google Scholar 

  • Ning L, Guillemot A, Zhao J et al (2016b) Influence of flow behavior of alginate-cell suspensions on cell viability and proliferation. Tissue Eng Part C Methods 22:652–662

    Article  CAS  PubMed  Google Scholar 

  • Novikova LN, Pettersson J, Brohlin M et al (2008) Biodegradable poly-β-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair. Biomaterials 29:1198–1206

    Article  CAS  PubMed  Google Scholar 

  • Ouyang L, Yao R, Chen X et al (2015a) 3D printing of HEK 293FT cell-laden hydrogel into macroporous constructs with high cell viability and normal biological functions. Biofabrication 7:015010

    Article  CAS  PubMed  Google Scholar 

  • Ouyang L, Yao R, Mao S et al (2015b) Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation. Biofabrication 7:044101

    Article  PubMed  Google Scholar 

  • Ozbolat IT, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343

    Article  CAS  PubMed  Google Scholar 

  • Rajaram A, Schreyer D, Chen D (2014) Alginate/hyaluronic acid hydrogel scaffolds with structural integrity and preserved schwann cell viability. 3d Print Addit Manuf 1:197–203

    Google Scholar 

  • Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53

    Article  CAS  PubMed  Google Scholar 

  • Suri S, Schmidt CE (2010) Cell-laden hydrogel constructs of hyaluronic acid, collagen, and laminin for neural tissue engineering. Tissue Eng Part A 16:1703–1716

    Article  CAS  PubMed  Google Scholar 

  • Yi-Hua AN, Wan H, Zhang ZS et al (2003) Effect of rat Schwann cell secretion on proliferation and differentiation of human neural stem cells. Biomed Environ Sci 16:90–94

    Google Scholar 

  • Yuan Q, Liao D, Yang X et al (2010) Effect of implant surface microtopography on proliferation, neurotrophin secretion, and gene expression of Schwann cells. J Biomed Mater Res Part A 93A:381–388

    CAS  Google Scholar 

  • Zhao Y, Yao R, Ouyang L et al (2014) Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 6:035001

    Article  CAS  PubMed  Google Scholar 

  • Zurita M, Vaquero J, Oya S et al (2005) Schwann cells induce neuronal differentiation of bone marrow stromal cells. Neuroreport 16:505–508

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the following programs: Chinese army open Grant (No. BWS17J036); China Shenzhen Peacock Plan Project (No. KQTD201209); and ‘Biomanufacturing and Engineering Living Systems’ Overseas Expertise Introduction Center for Discipline Innovation (No. G2017002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lian Zhou or Tao Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, X., Wang, X. et al. 3D bioprinted rat Schwann cell-laden structures with shape flexibility and enhanced nerve growth factor expression. 3 Biotech 8, 342 (2018). https://doi.org/10.1007/s13205-018-1341-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1341-9

Keywords

Navigation