Skip to main content
Log in

Efficient phosphate accumulation in the newly isolated Acinetobacter junii strain LH4

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Phosphate (PO43−) accumulation associated with bacteria contributes to efficient remediation of eutrophic waters and has attracted attention due to its low cost, high removal efficiency and environmental friendliness. In the present study, we isolated six strains from sludge with high concentrations of chemical oxygen demand, total nitrogen and total phosphorus levels. Among them, strain LH4 exhibited the greatest PO43− removal ability. Strain LH4 is typical of Acinetobacter junii based on physiological, biochemical, and molecular analyses and is a PO43−-accumulating organism (PAO) based on toluidine blue staining. The strain grew quickly when subjected to aerobic medium after pre-incubation under anaerobic condition, with a maximum OD600 of 1.429 after 8 h and PO43− removal efficiency of 99%. Our data also indicated that this strain preferred utilizing the carbon (C) sources sodium formate and sodium acetate and the nitrogen (N) sources NH4Cl and (NH4)2SO4 over other compounds. To achieve optimal PO43− removal efficiency, a C:N ratio of 5:1, inoculation concentration of 3%, solution pH of 6, incubation temperature of 30 °C, and shaking speed of 100 rpm were recommended for A. junii strain LH4. By incubating this strain with different concentrations of PO43−, we calculated that its relative PO43− removal capacity ranged from 0.67 to 3.84 mg L−1 h−1, ranking in the top three among reported PAOs. Our study provided a new PO43−-accumulating bacterial strain that holds promise for remediating eutrophic waters, and its potential for large-scale use warrants further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acevedo B, Oehmen A, Carvalho G, Seco A, Borrás L, Barat R (2012) Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage. Water Res 46:1889–1900

    Article  CAS  PubMed  Google Scholar 

  • Anschutz P, Deborde J (2016) Spectrophotometric determination of phosphate in matrices from sequential leaching of sediments. Limnol Oceanogr Methods 14:245–256

    Article  CAS  Google Scholar 

  • Arshadi M, Gholtash JE, Zandi H, Foroughifard S (2015) Phosphate removal by a nano-biosorbent from the synthetic and real (Persian Gulf) water samples. RSC Adv 5:43290–43302

    Article  CAS  Google Scholar 

  • Ascott MJ, Gooddy DC, Lapworth DJ, Stuart ME (2016) Estimating the leakage contribution of phosphate dosed drinking water to environmental phosphorus pollution at the national-scale. Sci Total Environ 572:1534–1542

    Article  CAS  PubMed  Google Scholar 

  • Bao L-l, Li D, Li X-K, Huang R-X, Zhang J, Lv Y, Xia G-Q (2007) Phosphorus accumulation by bacteria isolated from a continuous-flow two-sludge system. J Environ Sci China 19:391–395

    Article  CAS  PubMed  Google Scholar 

  • Boswell CD, Dick RE, Eccles H, Macaskie LE (2001) Phosphate uptake and release by Acinetobacter johnsonii in continuous culture and coupling of phosphate release to heavy metal accumulation. J Ind Microbiol Biotechnol 26:333–340

    Article  CAS  PubMed  Google Scholar 

  • Bouvet PJM, Grimont PAD (1986) Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov. Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int J Syst Evol Microbiol 36:228–240

    CAS  Google Scholar 

  • Cai R, Wang X, Ji X, Peng B, Tan C, Huang X (2017) Phosphate reclaim from simulated and real eutrophic water by magnetic biochar derived from water hyacinth. J Environ Manag 187:212–219

    Article  CAS  Google Scholar 

  • Carpenter SR (2005) Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc Natl Acad Sci USA 102:10002–10005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr EL, Kämpfer P, Patel BKC, Gürtler V, Seviour RJ (2003) Seven novel species of Acinetobacter isolated from activated sludge. Int J Syst Evol Microbiol 53:953–963

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Sun H-Q, Jiang H-L (2016) The addition of FeOOH binds phosphate in organic matter-rich sediments. Chem Ecol 32:432–445

    Article  CAS  Google Scholar 

  • Cokgor EU, Yagci NO, Randall CW, Artan N, Orhon D (2004) Effects of pH and substrate on the competition between glycogen and phosphorus accumulating organisms. J Environ Sci Health A 39:1695–1704

    Article  CAS  Google Scholar 

  • Converti A, Rovatti M, Borghi MD (1995) Biological removal of phosphorus from wastewaters by alternating aerobic and anaerobic conditions. Water Res 29:263–269

    Article  CAS  Google Scholar 

  • Deinema MH, Habets LHA, Scholten J, Turkstra E, Webers HAAM (1980) The accumulation of polyphosphate in Acinetobacter spp. FEMS Microbiol Lett 9:275–279

    Article  CAS  Google Scholar 

  • Deppe T, Benndorf J (2002) Phosphorus reduction in a shallow hypereutrophic reservoir by in-lake dosage of ferrous iron. Water Res 36:4525–4534

    Article  CAS  PubMed  Google Scholar 

  • Filipe CDM, Daigger GT, Grady CPL (2001a) Effects of pH on the rates of aerobic metabolism of phosphate-accumulating and glycogen-accumulating organisms. Water Environ Res 73:213–222

    Article  CAS  PubMed  Google Scholar 

  • Filipe CDM, Daigger GT, Grady CPL (2001b) pH as a key factor in the competition between glycogen-accumulating organisms and phosphorus-accumulating organisms. Water Environ Res 73:223–232

    Article  CAS  PubMed  Google Scholar 

  • Florentz M, Caille D, Bourdon F, Sibony J (1987) Biological phosphorus removal in France. Water Sci Technol 19:1171–1173

    Article  CAS  Google Scholar 

  • Fuhs GW, Chen M (1975) Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater. Microb Ecol 2:119–138

    Article  CAS  PubMed  Google Scholar 

  • Garrity GM, Bell JA, Lilburn TG (2004) Taxonomic outline of the prokaryotes. Bergey’s manual® of systematic bacteriology. Springer, Berlin

    Google Scholar 

  • Genz A, Kornmüller A, Jekel M (2004) Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide. Water Res 38:3523–3530

    Article  CAS  PubMed  Google Scholar 

  • Gibbs M, Özkundakci D (2010) Effects of a modified zeolite on P and N processes and fluxes across the lake sediment-water interface using core incubations. Hydrobiologia 661:21–35

    Article  CAS  Google Scholar 

  • Goldman JC, Caron DA, Dennett MR (1987) Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnol Oceanogr 32:1239–1252

    Article  CAS  Google Scholar 

  • Han Y, Zhang W, Lu W, Zhou Z, Zhuang Z, Li M (2014) Co-immobilization of Pseudomonas stutzeri YHA-13 and Alcaligenes sp. ZGED-12 with polyvinyl alcohol-alginate for removal of nitrogen and phosphorus from synthetic wastewater. Environ Technol 35:2813–2820

    Article  CAS  PubMed  Google Scholar 

  • Han Y-H, Yang G-M, Fu J-W, Guan D-X, Chen Y, Ma LQ (2016) Arsenic-induced plant growth of arsenic-hyperaccumulator Pteris vittata: impact of arsenic and phosphate rock. Chemosphere 149:366–372

    Article  CAS  PubMed  Google Scholar 

  • Han Y-H, Fu J-W, Xiang P, Cao Y, Rathinasabapathi B, Chen Y, Ma LQ (2017) Arsenic and phosphate rock impacted the abundance and diversity of bacterial arsenic oxidase and reductase genes in rhizosphere of As-hyperaccumulator Pteris vittata. J Hazard Mater 321:146–153

    Article  CAS  PubMed  Google Scholar 

  • Hrenovic J, Tibljas D, Ivankovic T, Kovacevic D, Sekovanic L (2010) Sepiolite as carrier of the phosphate-accumulating bacteria Acinetobacter junii. Appl Clay Sci 50:582–587

    Article  CAS  Google Scholar 

  • Hrenovic J, Kovacevic D, Ivankovic T, Tibljas D (2011) Selective immobilization of Acinetobacter junii on the natural zeolitized tuff in municipal wastewater. Colloid Surf B 88:208–214

    Article  CAS  Google Scholar 

  • Ingraham JL, Maaløe O, Neidhardt FC (1983) Growth of the bacterial cells. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Joo H-S, Hirai M, Shoda M (2006) Piggery wastewater treatment using Alcaligenes faecalis strain No. 4 with heterotrophic nitrification and aerobic denitrification. Water Res 40:3029–3036

    Article  CAS  PubMed  Google Scholar 

  • Law al AT, Adeloju SB (2013) Progress and recent advances in phosphate sensors: a review. Talanta 114:191–203

    Article  CAS  PubMed  Google Scholar 

  • Li X-N, Song H-L, Li W, Lu X-W, Nishimura O (2011) An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. Ecol Eng 36:382–390

    Article  Google Scholar 

  • Liu X, Sheng H, Jiang S, Yuan Z, Zhang C, Elser JJ (2016) Intensification of phosphorous cycling in China since the 1600s. Proc Natl Acad Sci USA 113:2609–2614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lötter LH, Wentzel MC, Loewenthal RE, Ekama GA, Marais GvR (1986) A study of selected characteristics of Acinetobacter spp. isolated from activated sludge in anaerobic/anoxic/aerobic and aerobic systems. Water SA 12:203–208

    Google Scholar 

  • Madigan MT, Martinko JM, Dunlap PV, Clark DP (2008) Brock biology of microorganisms. Benjamin Cummings, San Francisco

    Google Scholar 

  • Meinikmann K, Hupfer M, Lewandowski J (2015) Phosphorus in groundwater discharge—a potential source for lake eutrophication. J Hydrol 524:214–226

    Article  CAS  Google Scholar 

  • Merzouki M, Delgenès J-P, Bernet N, Moletta R, Benlemlih M (1999) Polyphosphate-accumulating and denitrifying bacteria isolated from anaerobic-anoxic and anaerobic-aerobic sequencing batch reactors. Curr Microbiol 38:9–17

    Article  CAS  PubMed  Google Scholar 

  • Momba MNB, Cloete TE (1996) The relationship of biomass to phosphate uptake by Acinetobacter junii activated sludge mixed liquor. Water Res 30:364–370

    Article  CAS  Google Scholar 

  • Mulkerrins D, Dobson ADW, Colleran E (2004) Parameters affecting biological phosphate removal from wastewaters. Environ Int 30:249–259

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HTT, Nielsen JL, Nielsen PH (2012) ‘Candidatus Halomonas phosphatis’, a novel polyphosphate-accumulating organism in full-scale enhanced biological phosphorus removal plants. Environ Microbiol 14:2826–2837

    Article  CAS  PubMed  Google Scholar 

  • Olsvik ES, Kristiansen B (1992) Influence of oxygen tension, biomass concentration, and specific growth rate on the rheological properties of a filamentous fermentation broth. Biotechnol Bioeng 40:1293–1299

    Article  CAS  PubMed  Google Scholar 

  • Onda S, Takii S (2002) Isolation and characterization of a Gram-positive polyphosphate-accumulating bacterium. J Gen Appl Microbiol 48:125–133

    Article  CAS  PubMed  Google Scholar 

  • Pantano G, Ferreira JS, Aquino FWB, Pereira-Filho ER, Mozeto AA, Fadini PS (2017) Biosorbent, a promising material for remediation of eutrophic environments: studies in microcosm. Environ Sci Pollut Res 24:2685–2696

    Article  CAS  Google Scholar 

  • Peña C, Trujillo-Roldán MA, Galindo E (2000) Influence of dissolved oxygen tension and agitation speed on alginate production and its molecular weight in cultures of Azotobacter vinelandii. Enzyme Microb Technol 27:390–398

    Article  PubMed  Google Scholar 

  • Peng Y-z, Wang X-l, Li B-k (2006) Anoxic biological phosphorus uptake and the effect of excessive aeration on biological phosphorus removal in the A2O process. Desalination 189:155–164

    Article  CAS  Google Scholar 

  • Peñuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens IA (2013) Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat Commun 4:2934

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sidat M, Bux F, Kasan H (1999) Polyphosphate accumulation by bacteria isolated from activated sludge. Water SA 25:175–180

    CAS  Google Scholar 

  • Sin G, Niville K, Bachis G, Jiang T, Nopens I, van Hulle S, Vanrolleghem PA (2008) Nitrite effect on the phosphorus uptake activity of phosphate accumulating organisms (PAOs) in pilot-scale SBR and MBR reactors. Water SA 34:249–260

    CAS  Google Scholar 

  • Soejima K, Oki K, Terada A, Tsuneda S, Hirata A (2006) Effects of acetate and nitrite addition on fraction of denitrifying phosphate-accumulating organisms and nutrient removal efficiency in anaerobic/aerobic/anoxic process. Bioproc Biosyst Eng 29:305–313

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu Y, Schuler AJ (2013) Low acetate concentrations favor polyphosphate-accumulating organisms over glycogen-accumulating organisms in enhanced biological phosphorus removal from wastewater. Environ Sci Technol 47:3816–3824

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Xu X, Ren Z, Gao B (2016a) Removal of phosphate and chromium(VI) from liquids by an amine-crosslinked nano-Fe3O4 biosorbent derived from corn straw. RSC Adv 6:47237–47248

    Article  CAS  Google Scholar 

  • Wang S-S, Ye S-L, Han Y-H, Shi X-X, Chen D-L, Li M (2016b) Biosorption and bioaccumulation of chromate from aqueous solution by a newly isolated Bacillus mycoides strain 200AsB1. RSC Adv 6:101153–101161

    Article  CAS  Google Scholar 

  • Whang L-M, Park JK (2006) Competition between polyphosphate- and glycogen-accumulating organisms in enhanced-biological-phosphorus-removal systems: effect of temperature and sludge age. Water Environ Res 78:4–11

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Li M (2015) Denitrifying and phosphorus accumulating mechanisms of denitrifying phosphorus accumulating organisms (DPAOs) for wastewater treatment—a review. Acta Microbiol Sin 55:264–272

    CAS  Google Scholar 

  • Zamparas M, Drosos M, Georgiou Y, Deligiannakis Y, Zacharias I (2013) A novel bentonite-humic acid composite material Bephos™ for removal of phosphate and ammonium from eutrophic waters. Chem Eng J 225:43–51

    Article  CAS  Google Scholar 

  • Zeng W, Li B, Yang Y, Wang X, Li L, Peng Y (2014) Impact of nitrite on aerobic phosphorus uptake by poly-phosphate accumulating organisms in enhanced biological phosphorus removal sludges. Bioproc Biosyst Eng 37:277–287

    Article  CAS  Google Scholar 

  • Zhang P, Sun M, Zhang C (2011) Preliminary study on screening and phosphorus removal characteristics of a halophilic phosphate accumulating bacterial strain. Acta Sci Circumst 31:2368–2373

    CAS  Google Scholar 

  • Zhuang Z, Han Y, Zhang W, Zhou Z, Chen J, Li M (2014) Isolation, identification and phosphorus-removal characterization of bacteria Alcaligenes sp. strain ED-12 for phosphorus-accumulation. Acta Sci Circumst 34:678–687

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported in party by the Science and Technology Program of Fujian Province (2017Y0027), the Education Department Fund of Fujian Province (JAT170144), the Key Research and Development Platform of Advanced Polymer Materials (2016G003), the Key Technology Research and Development Platform of Synthetic Resin Functionalization of Fujian Province (2014H2003), the Science and Technology Program of Quanzhou (2016Z019), the Science and Technology Program of Quangang (2016G16) and the Innovative Entrepreneurial Training Plan for College Students of Fujian Province (201510394020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, YH., Fu, T., Wang, SS. et al. Efficient phosphate accumulation in the newly isolated Acinetobacter junii strain LH4. 3 Biotech 8, 313 (2018). https://doi.org/10.1007/s13205-018-1338-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1338-4

Keywords

Navigation