Skip to main content

Advertisement

Log in

Xanthan gum production from acid hydrolyzed broomcorn stem as a sole carbon source by Xanthomonas campestris

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Xanthan gum is an exo-polysaccharide industrially produced by fermentation using simple sugars. In this study, broomcorn stem was introduced as a low-cost- and widely available carbon source for xanthan gum fermentation. Broomcorn stem was hydrolyzed using sulphuric acid to liberate reducing sugar which was then used as a carbon source for biosynthesis of xanthan gum by Xanthomonas campesteris. Effects of hydrolysis time (15, 30, 45 and 60 min), sulphuric acid concentration (2, 4, 6 and 8% v/v) and solid loading (3, 4, 5 and 6% w/v) on the yield of reducing sugar and consequent xanthan production were investigated. Maximum reducing sugar yield (55.2%) and xanthan concentration (8.9 g/L) were obtained from hydrolysis of 4% (w/v) broomcorn stem with 6% (v/v) sulphuric acid for 45 min. The fermentation product was identified and confirmed as xanthan gum using Fourier transform infrared spectroscopy analysis. Thermogrvimetric analysis showed that thermal stability of synthesized xanthan gum was similar to those reported in previous studies. The molecular weight of the produced xanthan (2.23 × 106 g/mol) was determined from the intrinsic viscosity. The pyruvate and acetyl contents in xanthan gum were 4.21 and 5.04%, respectively. The chemical composition results indicated that this biopolymer contained glucose, mannose and glucoronic acid with molecular ratio of 1.8:1.5:1.0. The kinetics of batch fermentation was also investigated. The kinetic parameters of the model were determined by fermentation results and evaluated. The results of this study are noteworthy for the sustainable xanthan gum production from low-value agricultural waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bhatia SK, Kumar N, Bhatia RK (2015) Stepwise bioprocess for exopolysaccharide production using potato starch as carbon source. 3 Biotech 5(5):735–739

    Article  PubMed  Google Scholar 

  • Bhatia SK, Lee BR, Sathiyanarayanan G, Song HS, Kim J, Jeon JM, Kim JH, Park SH, Yu JH, Park K, Yang YH (2016) Medium engineering for enhanced production of undecylprodigiosin antibiotic in Streptomyces coelicolor using oil palm biomass hydrolysate as a carbon source. Bioresour Technol 217:141–149

    Article  CAS  PubMed  Google Scholar 

  • Bhatia SK, Kim J, Song HS, Kim HJ, Jeon JM, Sathiyanarayanan G, Yoon JJ, Park K, Kim YG, Yang YH (2017) Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01. Bioresour Technol 233:99–109

    Article  CAS  PubMed  Google Scholar 

  • Casas J, Santos V, Garcıa-Ochoa F (2000) Xanthan gum production under several operational conditions: molecular structure and rheological properties. Enzyme Microb Technol 26(2):282–291

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Zhao J, Xia L (2009) Comparison of four different chemical pretreatments of corn stover for enhancing enzymatic digestibility. Biomass Bioenergy 33(10):1381–1385

    Article  CAS  Google Scholar 

  • de Sousa Costa LA, Inomata Campos M, Izabel Druzian J, de Oliveira AM, de Oliveira Junior EN (2014) Biosynthesis of xanthan gum from fermenting shrimp shell: yield and apparent viscosity. Int J Polym Sci 2014:1–8

    Article  CAS  Google Scholar 

  • Demirci AS, Arici M, Gumus T (2012) Xanthan gum production from hydrolyzed rice bran as a carbon source by Xanthomonas spp. Korean J Microbiol Biotechnol 40:356–363

    Article  CAS  Google Scholar 

  • Farahi A, Najafpour G, Ghoreyshi A, Mohammadi M, Esfahanian M (2012) Enzymatic production of reducing sugars from broomcorn seed (Sorghum vulgare): process optimization and kinetic studies. World Appl Sci J 18(4):568–574

    CAS  Google Scholar 

  • Faria S, Vieira P, Resende M, França F, Cardoso V (2009) A comparison between shaker and bioreactor performance based on the kinetic parameters of xanthan gum production. Appl Biochem Biotechnol 156(1–3):45–58

    Article  CAS  PubMed  Google Scholar 

  • Faria S, Vieira PA, Resende MM, Ribeiro EJ, Cardoso VL (2010) Application of a model using the phenomenological approach for prediction of growth and xanthan gum production with sugar cane broth in a batch process. LWT Food Sci Technol 43(3):498–506

    Article  CAS  Google Scholar 

  • Faria S, de Oliveira Petkowicz CL, de Morais SAL, Terrones MGH, de Resende MM, de França FP, Cardoso VL (2011) Characterization of xanthan gum produced from sugar cane broth. Carbohyd Polym 86(2):469–476

    Article  CAS  Google Scholar 

  • Garcia-Ochoa F, Santos VE, Alcon A (2004) Chemical structured kinetic model for xanthan production. Enzyme Microb Technol 35(4):284–292

    Article  CAS  Google Scholar 

  • Ghashghaei T, Soudi MR, Hoseinkhani S (2016) Optimization of xanthan gum production from grape juice concentrate using Plackett–Burman design and response surface methodology. Appl Food Biotechnol 3(1):15–23

    CAS  Google Scholar 

  • Gilani S, Najafpour G, Heydarzadeh H, Zare H (2011) Kinetic models for xanthan gum production using Xanthomonas campestris from molasses. Chem Ind Chem Eng 17(2):179–187

    Article  CAS  Google Scholar 

  • Gunasekar V, Reshma K, Treesa G, Gowdhaman D, Ponnusami V (2014) Xanthan from sulphuric acid treated tapioca pulp: influence of acid concentration on xanthan fermentation. Carbohyd Polym 102:669–673

    Article  CAS  Google Scholar 

  • Jazini M, Fereydouni E, Karimi K (2017) Microbial xanthan gum production from alkali-pretreated rice straw. RSC Adv 7(6):3507–3514

    Article  Google Scholar 

  • Kalogiannis S, Iakovidou G, Liakopoulou-Kyriakides M, Kyriakidis DA, Skaracis GN (2003) Optimization of xanthan gum production by Xanthomonas campestris grown in molasses. Process Biochem 39(2):249–256

    Article  CAS  Google Scholar 

  • Kerdsup P, Tantratian S, Sanguandeekul R, Imjongjirak C (2011) Xanthan production by mutant strain of Xanthomonas campestris TISTR 840 in raw cassava starch medium. Food Bioprocess Technol 4(8):1459–1462

    Article  CAS  Google Scholar 

  • Khosravi-Darani K, Reyhani FS, Nejad B, Farhadi GBN (2011) Bench scale production of xanthan from date extract by Xanthomonas campestris in submerged fermentation using central composite design. Afr J Biotechnol 10(62):13520–13527

    CAS  Google Scholar 

  • Kim S-J, Dwiatmoko AA, Choi JW, Suh Y-W, Suh DJ, Oh M (2010) Cellulose pretreatment with 1-n-butyl-3-methylimidazolium chloride for solid acid-catalyzed hydrolysis. Bioresour Technol 101(21):8273–8279

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Murthy GS (2011) Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol Biofuels 4(1):27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Feke DL (2015) Rheological and kinetic study of the ultrasonic degradation of xanthan gum in aqueous solution: effects of pyruvate group. Carbohyd polym 124:216–221

    Article  CAS  Google Scholar 

  • Li P, Li T, Zeng Y, Li X, Jiang X, Wang Y, Xie T, Zhang Y (2016) Biosynthesis of xanthan gum by Xanthomonas campestris LRELP-1 using kitchen waste as the sole substrate. Carbohyd Polym 151:684–691

    Article  CAS  Google Scholar 

  • Mccomb EA, Mccready RM, Chem A (1957) Determination of acetyl in pectin and in acetylated carbohydrate polymers. Anal Chem 29(5):819–821

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  • Mirahmadi K, Kabir MM, Jeihanipour A, Karimi K, Taherzadeh M (2010) Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. BioResources 5(2):928–938

    CAS  Google Scholar 

  • Niknezhad SV, Asadollahi MA, Zamani A, Biria D, Doostmohammadi M (2015) Optimization of xanthan gum production using cheese whey and response surface methodology. Food Sci Biotechnol 24(2):453–460

    Article  CAS  Google Scholar 

  • Nikzad M, Movagharnejad K, Talebnia F, Najafpour G, Ghorban Farahi AH (2014) A study on alkali pretreatment conditions of sorghum stem for maximum sugar recovery using statistical approach. Chem Ind Chem Eng 20(2):261–271

    Article  CAS  Google Scholar 

  • Palaniraj A, Jayaraman V (2011) Production, recovery and applications of xanthan gum by Xanthomonas campestris. J Food Eng 106(1):1–12

    Article  CAS  Google Scholar 

  • Papagianni M, Psomas S, Batsilas L, Paras S, Kyriakidis D, Liakopoulou-Kyriakides M (2001) Xanthan production by Xanthomonas campestris in batch cultures. Process Biochem 37(1):73–80

    Article  CAS  Google Scholar 

  • Pooja D, Panyaram S, Kulhari H, Rachamalla SS, Sistla R (2014) Xanthan gum stabilized gold nanoparticles: characterization, biocompatibility, stability and cytotoxicity. Carbohyd Polym 110:1–9

    Article  CAS  Google Scholar 

  • Riazi S, Rahimnejad M, Najafpour G (2015) Hydrolysis of sorghum (broomcorn) in diluted hydrochloric acid. Int J Eng 28(11):1543

    CAS  Google Scholar 

  • Rosalam S, England R (2006) Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp. Enzyme Microb Technol 39(2):197–207

    Article  CAS  Google Scholar 

  • Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2011) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory Technical Report NREL

  • Salah RB, Chaari K, Besbes S, Ktari N, Blecker C, Deroanne C, Attia H (2010) Optimisation of xanthan gum production by palm date (Phoenix dactylifera L.) juice by-products using response surface methodology. Food Chem 121(2):627–633

    Article  CAS  Google Scholar 

  • Silva MF, Fornari RCG, Mazutti MA, Oliveira D, Padilha FF, Cichoski AJ, Cansian RL, Luccio MD, Treichel H (2009) Production and characterization of xantham gum by Xanthomonas campestris using cheese whey as sole carbon source. J Food Eng 90:119–123

    Article  CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of ash in biomass standard biomass analytical procedures. National Renewable Energy Laboratory Technical Report NREL

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of ash in biomass (NREL/TP-510-42622). National Renewable Energy Laboratory, Golden 2005

  • Taherzadeh MJ, Gustafsson L, Niklasson C, Liden G (2000) Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53:701–708

    Article  CAS  PubMed  Google Scholar 

  • Talebnia F, Bafrani MP, Lundin M, Taherzadeh M (2007) Optimization study of citrus wastes saccharification by dilute acid hydrolysis. BioResources 3(1):108–122

    Google Scholar 

  • Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101(13):4744–4753

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Zhou D, Wang Y, Wei S, Yang W, Kuang M, Ma L, Fang D, Xu S, Du S-K (2016a) Bioethanol production from cotton stalk: a comparative study of various pretreatments. Fuel 184:527–532

    Article  CAS  Google Scholar 

  • Wang Z, Wu J, Zhu L, Zhan X (2016b) Activation of glycerol metabolism in Xanthomonas campestris by adaptive evolution to produce a high-transparency and low-viscosity xanthan gum from glycerol. Bioresour Technol 211(2016):390–397

    Article  CAS  PubMed  Google Scholar 

  • Wang z, Wu J, Gao MJ, Zhu L, Zhan XB (2017) High production of xanthan gum by a glycerol tolerant strain Xanthomonas campestris WXLB-006. Prep Biochem Biotechnol 47(5):468–472

    Article  CAS  PubMed  Google Scholar 

  • West TP, Nemmers B (2008) Curdlan production by Agrobacterium sp. ATCC 31749 on an ethanol fermentation coproduct. J Basic Microbiol 48(1):65–68

    Article  CAS  PubMed  Google Scholar 

  • Wu S-J, Wu J-H, Xia L-Z, Chu C, Liu D, Gong M (2013) Preparation of xanthan-derived oligosaccharides and their hydroxyl radical scavenging activity. Carbohyd Polym 92(2):1612–1614

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Nikzad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleymanpour, Z., Nikzad, M., Talebnia, F. et al. Xanthan gum production from acid hydrolyzed broomcorn stem as a sole carbon source by Xanthomonas campestris. 3 Biotech 8, 296 (2018). https://doi.org/10.1007/s13205-018-1322-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1322-z

Keywords

Navigation