3 Biotech

, 8:215 | Cite as

A combined pathway of organogenesis and somatic embryogenesis for an efficient large-scale propagation in date palm (Phoenix dactylifera L.) cv. Mejhoul

  • Mouaad Amine Mazri
  • Reda Meziani
  • Ilham Belkoura
  • Boutaïna Mokhless
  • Souad Nour
Original Article
  • 9 Downloads

Abstract

An efficient regeneration system via a combined pathway of organogenesis and somatic embryogenesis was developed for date palm (Phoenix dactylifera L.) cv. Mejhoul. Adventitious buds were obtained from shoot-tip explants with a frequency of 53.3% after 9 months of culture: 6 months on half-strength Murashige and Skoog (MS/2) medium containing 14.2 µM indole-3-acetic acid (IAA), 13.4 µM 1-naphthaleneacetic acid (NAA) and 0.5 µM 6-(dimethylallylamino) purine (2iP), and 3 months on MS/2 medium supplemented with 1.1 µM IAA, 1.1 µM NAA, 0.5 µM 2iP, 2.2 µM 6-benzyladenine (BA) and 0.4 µM kinetin. Adventitious bud segments were used as explants to induce somatic embryogenesis, and the effects of different concentrations (22.5, 45, 90, 225 or 450 µM) of 3,6-dichloro-o-anisic acid (dicamba) and 4-amino-3,5,6-trichloropicolinic acid (picloram) were evaluated. The optimal medium for somatic embryogenesis induction was MS medium supplemented with 45 µM picloram and 5 µM 2iP, in which the somatic embryogenesis rate was 70%. For somatic embryo maturation, the effects of sorbitol, mannitol, polyethylene glycol (PEG) and abscisic acid (ABA) were tested. The highest maturation rate (88.6 mature somatic embryos per 100 mg fresh weight callus) was observed on liquid MS medium supplemented with 20 g L−1 PEG. Subsequent somatic embryo germination was achieved with up to 52.0% in MS medium containing 2.5 µM NAA and 2.5 µM BA. The regenerated plantlets were transferred to the glasshouse where 76.0% of them survived.

Keywords

Organogenesis Phoenix dactylifera L. Regeneration Somatic embryogenesis 

Abbreviations

2iP

6-(Dimethylallylamino) purine

ABA

Abscisic acid

BA

6-Benzyladenine

FW

Fresh weight

IAA

Indole-3-acetic acid

MS

Murashige and Skoog

NAA

1-Naphthaleneacetic acid

NOA

2-Naphthoxyacetic acid

PEG

Polyethylene glycol

PGR

Plant growth regulator

Notes

Acknowledgements

Part of this work was financed by the Centre National pour la Recherche Scientifique et Technique (CNRST, Morocco) through the PPR2 program (Research Project Ref.: PPR2/2016/36).

Compliance with ethical standards

Conflict of interest

We declare that we have no conflict of interest.

References

  1. Abohatem M, Zouine J, El Hadrami I (2011) Low concentrations of BAP and high rate of subcultures improve the establishment and multiplication of somatic embryos in date palm suspension cultures by limiting oxidative browning associated with high levels of total phenols and peroxidase activities. Sci Hortic 130:344–348CrossRefGoogle Scholar
  2. Al-Khayri JM (2010) Somatic embryogenesis of date palm (Phoenix dactylifera L.) improved by coconut water. Biotechnol 9:477–484CrossRefGoogle Scholar
  3. Al-Khayri JM, Al-Bahrany AM (2012) Effect of abscisic acid and polyethylene glycol on the synchronization of somatic embryo development in date palm (Phoenix dactylifera L.). Biotechnol 11:318–325CrossRefGoogle Scholar
  4. Al-Mayahi AMW (2014) Thidiazuron-induced in vitro bud organogenesis of the date palm (Phoenix dactylifera L.) cv. Hillawi. Afr J Biotechnol 13:3581–3590CrossRefGoogle Scholar
  5. Al-Mazroui HS, Zaid A, Bouhouche N (2006) Morphological abnormalities in tissue culture-derived date palm (Phoenix dactylifera L.). Acta Hortic 736:329–335Google Scholar
  6. Aslam J, Khan SA, Cheruth AJ, Mujib A, Sharma MP, Srivastava PSS (2011) Somatic embryogenesis, scanning electron microscopy, histology and biochemical analysis at different developing stages of embryogenesis in six date palm (Phoenix dactylifera L.) cultivars. Saudi J Biol Sci 18:369–380CrossRefGoogle Scholar
  7. Bekheet SA (2013) Direct organogenesis of date palm (Phoenix dactylifera L.) for propagation of true-to-type plants. Sci Agric 4:85–92Google Scholar
  8. Boufis N, Khelifi-Slaoui M, Djillali Z, Zaoui D, Morsli A, Bernards MA, Makhzum A, Khelifi L (2014) Effects of growth regulators and types of culture media on somatic embryogenesis in date palm (Phoenix dactylifera L. cv. Degla Beida). Sci Hortic 172:135–142CrossRefGoogle Scholar
  9. Davies PJ (2004) Regulatory factors in hormone action: level, location and signal transduction. In: Davies PJ (ed) Plant hormones. Kluwer Academic Publishers, Dordrecht, pp 16–35Google Scholar
  10. Eshraghi P, Zaghami R, Mirabdulbaghi M (2005) Somatic embryogenesis in two Iranian date palm cultivars. Afr J Biotechnol 4:1309–1312Google Scholar
  11. Fehér A, Pasternak TP, Duditis D (2003) Transition of somatic plant cell to an embryogenic state. Plant Cell Tissue Org Cult 74:201–228CrossRefGoogle Scholar
  12. Ferry M (2011) Potential of date palm micropropagation for improving small farming systems. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 15–28CrossRefGoogle Scholar
  13. Fki L, Masmoudi R, Drira N, Rival A (2003) An optimised protocol for plant regeneration from embryogenic suspension cultures of date palm (Phoenix dactylifera L.) cv. Deglet Nour. Plant Cell Rep 21:517–524Google Scholar
  14. Fki L, Masmoudi R, Kriaâ W, Mahjoub A, Sghaier B, Mzid R, Mliki A, Rival A, Drira N (2011) Date palm micropropagation via somatic embryogenesis. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 47–68CrossRefGoogle Scholar
  15. Gaspar T, Kevers C, Penel C, Greppin H, Reid DM, Thorpe TA (1996) Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cell Dev Biol Plant 32:272–289CrossRefGoogle Scholar
  16. George EF, Hall MA, De Klerk GJ (2008) The components of plant tissue culture media II: organic additions, osmotic and pH effects, and support systems. In: George EF, Hall MA, De Klerk GJ (eds) Plant propagation by tissue culture, 3rd edn. Springer, The Netherlands, pp 115–173Google Scholar
  17. Hussain I, Rashid H, Muhammad A, Quraishi A (2001) In vitro multiplication of date palm. In: Proceedings of the 2nd International Conference on Date Palm. Al Ain, UAE, pp 432–438Google Scholar
  18. Ibrahim IA, Hassan MM, Taha RA (2012) Partial desiccation improves plant regeneration of date palm in vitro cultures. Wudpecker J Agric Res 1:208–214Google Scholar
  19. Jain SM (2012) Date palm biotechnology: current status and prospective-an overview. Emir J Food Agric 24:386–399Google Scholar
  20. Khierallah HSM, Bader SM (2007) Micropropagation of date palm (Phoenix dactylifera L.) var. Maktoom through direct organogenesis. Acta Hortic 736:213–224CrossRefGoogle Scholar
  21. Khierallah HSM, Al-Hamdany MHS, Abdulkareem AA, Saleh FF (2015) Influence of sucrose and pacloburtazol on callus growth and somatic embryogenesis in date palm cv. Bream. Int J Curr Res Aca Rev 1:270–276Google Scholar
  22. Mazri MA (2012) Effect of liquid media and in vitro pre-acclimatization stage on shoot elongation and acclimatization of date palm (Phoenix dactylifera L.) cv. Najda. J Ornam Hortic Plants 2:225–231Google Scholar
  23. Mazri MA (2013) Effect of basal medium, explant size and density on the in vitro proliferation and growth of date palm (Phoenix dactylifera L.) cultivar ‘16-bis’. Notulae Scientia Biologicae 5:332–337Google Scholar
  24. Mazri MA (2014) Effects of plant growth regulators and carbon source on shoot proliferation and regeneration in date palm (Phoenix dactylifera L.) ‘16-bis’. J Hortic Sci Biotechnol 89:415–422CrossRefGoogle Scholar
  25. Mazri MA (2015) Role of cytokinins and physical state of the culture medium to improve in vitro shoot multiplication, rooting and acclimatization of date palm (Phoenix dactylifera L.) cv. Boufeggous. J Plant Biochem Biotechnol 24:268–275CrossRefGoogle Scholar
  26. Mazri MA, Meziani R (2013) An improved method for micropropagation and regeneration of date palm (Phoenix dactylifera L.). J Plant Biochem Biotechnol 22:176–184CrossRefGoogle Scholar
  27. Mazri MA, Meziani R (2015) Micropropagation of date palm: a review. Cell Dev Biol 4(3):160Google Scholar
  28. Mazri MA, Meziani R, El Fadile J, Ezzinbi A (2016) Optimization of medium composition for in vitro shoot proliferation and growth of date palm cv. Mejhoul. 3 Biotech 6:111CrossRefGoogle Scholar
  29. Mazri MA, Belkoura I, Meziani R, Mokhless B, Nour S (2017) Somatic embryogenesis from bud and leaf explants of date palm (Phoenix dactylifera L.) cv. Najda. 3 Biotech 7:58CrossRefGoogle Scholar
  30. Meziani R, Jaiti F, Mazri MA, Anjarne M, Ait Chitt M, El Fadile J, Alem C (2015) Effects of plant growth regulators and light intensity on the micropropagation of date palm (Phoenix dactylifera L.) cv. Mejhoul. J Crop Sci Biotech 18:325–331CrossRefGoogle Scholar
  31. Meziani R, Jaiti F, Mazri MA, Hassani A, Ben Salem S, Anjarne M, Ait Chitt M, Alem C (2016) Organogenesis of Phoenix dactylifera L. cv. Mejhoul: influences of natural and synthetic compounds on tissue browning, and analysis of protein concentrations and peroxidase activity in explants. Sci Hortic 204:145–152CrossRefGoogle Scholar
  32. Murashige T, Skoog FA (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Phys Planta 15:473–479CrossRefGoogle Scholar
  33. Omar MS, Novak FJ (1990) In vitro plant regeneration and ethylmethane sulfonate (EMS) uptake in somatic embryogenesis of date palm. Plant Cell Tissue Organ Cult 20:185–190Google Scholar
  34. Othmani A, Bayoudh C, Drira N, Marrakchi M, Trifi M (2009) Somatic embryogenesis and plant regeneration in date palm Phoenix dactylifera L., cv. Boufeggous is significantly improved by fine chopping and partial desiccation of embryogenic callus. Plant Cell Tissue Organ Cult 97:71–79CrossRefGoogle Scholar
  35. Pacurar DI, Perrone I, Bellini C (2014) Auxin is a central player in the hormone cross-talks that control adventitious rooting. Physiol Plant 151:83–96CrossRefGoogle Scholar
  36. Sedra MH (2015) Date palm status and perspective in Morocco. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Date palm genetic resources and utilization. Springer, Dordrecht, pp 257–323Google Scholar
  37. Tisserat B (1982) Factors involved in the production of plantlets from date palm callus cultures. Euphytica 31:201–214CrossRefGoogle Scholar
  38. Yaseen M, Ahmad T, Sablok G, Standardi A, Hafiz IA (2013) Review: role of carbon sources for in vitro plant growth and development. Mol Biol Rep 40:2837–2849CrossRefGoogle Scholar
  39. Zouine J, El Hadrami I (2007) Effect of 2,4-D, glutamine and BAP on embryogenic suspension culture of date palm (Phoenix dactylifera L.). Sci Hortic 112:221–226CrossRefGoogle Scholar
  40. Zouine J, El Bellaj M, Meddich A, Verdeil J, El Hadrami I (2005) Proliferation and germination of somatic embryos from embryogenic suspension cultures in Phoenix dactylifera L. Plant Cell Tissue Org Cult 82:83–92CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mouaad Amine Mazri
    • 1
  • Reda Meziani
    • 2
  • Ilham Belkoura
    • 3
  • Boutaïna Mokhless
    • 3
  • Souad Nour
    • 4
  1. 1.Institut National de la Recherche Agronomique, CRRA-Marrakech, UR Agro-Biotechnologie, Laboratoire de Biotechnologie VégétaleMarrakechMorocco
  2. 2.Institut National de la Recherche Agronomique, CRRA-Errachidia, UR Systèmes Oasiens, Laboratoire National de Culture des Tissus du Palmier DattierErrachidiaMorocco
  3. 3.Ecole Nationale d’Agriculture, Département des Sciences de Base, Laboratoire de Culture In VitroMeknesMorocco
  4. 4.Institut National de la Recherche Agronomique, CRRA-Marrakech, UR Protection des PlantesMarrakechMorocco

Personalised recommendations