3 Biotech

, 8:136 | Cite as

Deep sequencing and in silico analysis of small RNA library reveals novel miRNA from leaf Persicaria minor transcriptome

  • Abdul Fatah A. Samad
  • Nazaruddin Nazaruddin
  • Abdul Munir Abdul Murad
  • Jaeyres Jani
  • Zamri Zainal
  • Ismanizan Ismail
Short Reports


In current era, majority of microRNA (miRNA) are being discovered through computational approaches which are more confined towards model plants. Here, for the first time, we have described the identification and characterization of novel miRNA in a non-model plant, Persicaria minor (P. minor) using computational approach. Unannotated sequences from deep sequencing were analyzed based on previous well-established parameters. Around 24 putative novel miRNAs were identified from 6,417,780 reads of the unannotated sequence which represented 11 unique putative miRNA sequences. PsRobot target prediction tool was deployed to identify the target transcripts of putative novel miRNAs. Most of the predicted target transcripts (mRNAs) were known to be involved in plant development and stress responses. Gene ontology showed that majority of the putative novel miRNA targets involved in cellular component (69.07%), followed by molecular function (30.08%) and biological process (0.85%). Out of 11 unique putative miRNAs, 7 miRNAs were validated through semi-quantitative PCR. These novel miRNAs discoveries in P. minor may develop and update the current public miRNA database.


Deep sequencing In silico Novel miRNA Transcriptomic library Persicaria minor 



The author, Abdul Fatah A. Samad is sponsored by MyBrain 15 under MyPhD scholarship from Ministry of Higher Education (Malaysia). This research was supported by Dana Impak Perdana (DIP-2015-018).

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare by authors.

Supplementary material

13205_2018_1164_MOESM1_ESM.pptx (106 kb)
Supplementary material 1 (PPTX 105 kb)
13205_2018_1164_MOESM2_ESM.docx (13 kb)
Supplementary material 2 (DOCX 12 kb)


  1. Alptekin B, Budak H (2017) Wheat miRNA ancestors: evident by transcriptome analysis of A, B, and D genome donors. Funct Integr Genom 17(2):171–187. CrossRefGoogle Scholar
  2. Alptekin B, Akpinar BA, Budak H (2017) A Comprehensive prescription for plant miRNA identification. Front Plant Sci 7:2058. CrossRefGoogle Scholar
  3. Burdiak P, Rusaczonek A, Witon D, Glow D, Karpinski S (2015) Cysteine-rich receptor-like kinase CRK5 as a regulator of growth, development, and ultraviolet radiation responses in Arabidopsis thaliana. J Exp Bot 66(11):3325–3337. CrossRefGoogle Scholar
  4. Christapher PV, Parasuraman S, Christina JM, Asmawi MZ, Vikneswaran M (2015) Review on Polygonum minus. Huds, a commonly used food additive in Southeast Asia. ‎Pharmacogn Res 7(1):1–6. CrossRefGoogle Scholar
  5. Esquela-Kerscher A (2014) The lin-4 microRNA: the ultimate micromanager. Cell Cycle 13(7):1060–1061. CrossRefGoogle Scholar
  6. Gomes C, Cho J-H, Hood L, Franco O, Pereira R, Wang K (2013) A review of computational tools in microRNA discovery. Front Genet 4:81. CrossRefGoogle Scholar
  7. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524. CrossRefGoogle Scholar
  8. Kelley DR, Estelle M (2012) Ubiquitin-mediated control of plant hormone signaling. Plant Physiol 160(1):47–55. CrossRefGoogle Scholar
  9. Kodama Y, Suetsugu N, Kong S-G, Wada M (2010) Two interacting coiled-coil proteins, WEB1 and PMI2, maintain the chloroplast photorelocation movement velocity in Arabidopsis. Proc Natl Acad Sci 107(45):19591–19596. CrossRefGoogle Scholar
  10. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73. CrossRefGoogle Scholar
  11. Kulik A, Wawer I, Krzywińska E, Bucholc M, Dobrowolska G (2011) SnRK2 protein kinases—key regulators of plant response to abiotic stresses. OMICS 15(12):859–872. CrossRefGoogle Scholar
  12. Lin Z-JD, Liebrand TWH, Yadeta KA, Coaker GL (2015) PBL13 is a serine/threonine protein kinase that negatively regulates Arabidopsis immune responses. Plant Physiol. Google Scholar
  13. Loke K-K, Rahnamaie-Tajadod R, Yeoh C-C, Goh H-H, Mohamed-Hussein Z-A, Mohd Noor N, Zainal Z, Ismail I (2016) RNA-seq analysis for secondary metabolite pathway gene discovery in Polygonum minus. Genom Data 7:12–13. CrossRefGoogle Scholar
  14. Lu K, Liang S, Wu Z, Bi C, Yu YT, Wang XF, Zhang DP (2016) Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance. J Exp Bot 67(17):5009–5027. CrossRefGoogle Scholar
  15. Markham NR, Zuker M (2008) UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol (Clifton, NJ) 453:3–31. CrossRefGoogle Scholar
  16. Mathews DH, Moss WN, Turner DH (2010) Folding and finding RNA secondary structure. Cold Spring Harb Perspect Biol 2(12):a003665. CrossRefGoogle Scholar
  17. Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, Floden EW, Gardner PP, Jones TA, Tate J, Finn RD (2015) Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43(D1):D130–D137. CrossRefGoogle Scholar
  18. Ni M, Shu W, Bo X, Wang S, Li S (2010) Correlation between sequence conservation and structural thermodynamics of microRNA precursors from human, mouse, and chicken genomes. BMC Evol Biol 10(1):329. CrossRefGoogle Scholar
  19. Okamura K, Ladewig E, Zhou L, Lai EC (2013) Functional small RNAs are generated from select miRNA hairpin loops in flies and mammals. Genes Dev 27(7):778–792. CrossRefGoogle Scholar
  20. Ozyigit II, Filiz E, Vatansever R, Kurtoglu KY, Koc I, Öztürk MX, Anjum NA (2016) Identification and comparative analysis of H2O2-scavenging enzymes (ascorbate peroxidase and glutathione peroxidase) in selected plants employing bioinformatics approaches. Front Plant Sci 7:301. CrossRefGoogle Scholar
  21. Petersen LN, Marineo S, Mandalà S, Davids F, Sewell BT, Ingle RA (2010) The missing link in plant histidine biosynthesis: Arabidopsis myoinositol monophosphatase-like2 encodes a functional histidinol-phosphate phosphatase. Plant Physiol 152(3):1186–1196. CrossRefGoogle Scholar
  22. Piisilä M, Keceli MA, Brader G, Jakobson L, Jõesaar I, Sipari N, Kollist H, Palva ET, Kariola T (2015) The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana. BMC Plant Biol 15(1):53. CrossRefGoogle Scholar
  23. Piquerez SJM, Harvey SE, Beynon JL, Ntoukakis V (2014) Improving crop disease resistance: lessons from research on Arabidopsis and tomato. Front Plant Sci 5:671. CrossRefGoogle Scholar
  24. Prabu GR, Mandal AK (2010) Computational identification of miRNAs and their target genes from expressed sequence tags of tea (Camellia sinensis). Genom Proteom Bioinform 8(2):113–121. CrossRefGoogle Scholar
  25. Qader SW, Abdulla MA, Chua LS, Najim N, Zain MM, Hamdan S (2011) Antioxidant, total phenolic content and cytotoxicity evaluation of selected Malaysian plants. Molecules 16(4):3433–3443. CrossRefGoogle Scholar
  26. Rahnamaie-Tajadod R, Loke K-K, Goh H-H, Mohd Noor N (2017) Differential gene expression analysis in Polygonum minus leaf upon 24 h of Methyl Jasmonate Elicitation. Front Plant Sci 8:109. CrossRefGoogle Scholar
  27. Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant MicroRNAs. Plant Cell Online 25(7):2383–2399. CrossRefGoogle Scholar
  28. Samad AFA, Ali NM, Ismail I, Murad AMA (2016) Analysis of miRNAs targeting transcription factors in Persicaria minor induced by Fusarium oxysporum. AIP Conf Proc 1784(1):020009. CrossRefGoogle Scholar
  29. Samad AFA, Sajad M, Nazaruddin N, Fauzi IA, Murad AMA, Zainal Z, Ismail I (2017a) MicroRNA and transcription factor: key players in plant regulatory network. Front Plant Sci 8:565. CrossRefGoogle Scholar
  30. Samad AFA, Nazaruddin N, Sajad M, Jani J, Murad AMA, Zainal Z, Ismail I (2017b) Small RNA sequencing for secondary metabolite analysis in Persicaria minor. Genom Data 13:3–4. CrossRefGoogle Scholar
  31. Shahar S, Aziz AF, Ismail SNA, Yahya HM, Din NC, Manaf ZA, Badrasawi MM (2015) The effect of Polygonum minus extract on cognitive and psychosocial parameters according to mood status among middle-aged women: a randomized, double-blind, placebo-controlled study. Clin Interv Aging 10:1505–1520. CrossRefGoogle Scholar
  32. Stadhouders R, Pas SD, Anber J, Voermans J, Mes THM, Schutten M (2010) The effect of primer-template mismatches on the detection and quantification of nucleic acids using the 5′ nuclease assay. J Mol Diagn 12(1):109–117. CrossRefGoogle Scholar
  33. Stefanowicz K, Lannoo N, Van Damme EJM (2015) Plant F-box proteins—judges between life and death. Crit Rev Plant Sci 34(6):523–552. CrossRefGoogle Scholar
  34. Sunkar R, Li Y-F, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203. CrossRefGoogle Scholar
  35. Thomson DW, Bracken CP, Goodall GJ (2011) Experimental strategies for microRNA target identification. Nucleic Acids Res 39(16):6845–6853. CrossRefGoogle Scholar
  36. Vikram P, Chiruvella KK, Ripain IHA, Arifullah M (2014) A recent review on phytochemical constituents and medicinal properties of kesum (Polygonum minus Huds.). Asian Pac J Trop Biomed 4(6):430–435. CrossRefGoogle Scholar
  37. Wang S, Schiefelbein J (2014) Regulation of cell fate determination in plants. Front Plant Sci 5:368. Google Scholar
  38. Wang W-M, Liu P-Q, Xu Y-J, Xiao S (2016) Protein trafficking during plant innate immunity. J Integr Plant Biol 58(4):284–298. CrossRefGoogle Scholar
  39. Wen Z, Yao L, Wan R, Li Z, Liu C, Wang X (2015) Ectopic expression in Arabidopsis thaliana of an NB-ARC encoding putative disease resistance gene from wild Chinese Vitis pseudoreticulata enhances resistance to phytopathogenic fungi and bacteria. Front Plant Sci 6:1087. CrossRefGoogle Scholar
  40. Wu HJ, Ma YK, Chen T, Wang M, Wang XJ (2012) PsRobot: a web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res 40:W22–W28. (Web Server issue) CrossRefGoogle Scholar
  41. Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA (2006) Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci 63(2):246–254. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Abdul Fatah A. Samad
    • 1
  • Nazaruddin Nazaruddin
    • 1
    • 3
  • Abdul Munir Abdul Murad
    • 1
  • Jaeyres Jani
    • 4
  • Zamri Zainal
    • 1
    • 2
  • Ismanizan Ismail
    • 1
    • 2
  1. 1.School of Biosciences and Biotechnology, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Institute of Systems BiologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  3. 3.Department of Chemistry, Faculty of Mathematics and Natural SciencesUniversity of Syiah KualaDarussalam, Banda AcehIndonesia
  4. 4.BioEasy Sdn. Bhd. and ScienceVision Sdn. Bhd., Setia AlamShah AlamMalaysia

Personalised recommendations