Optimisation of culture composition for glyphosate degradation by Burkholderia vietnamiensis strain AQ5-12

Abstract

The herbicide glyphosate is often used to control weeds in agricultural lands. However, despite its ability to effectively kill weeds at low cost, health problems are still reported due to its toxicity level. The removal of glyphosate from the environment is usually done by microbiological process since chemical process of degradation is ineffective due to the presence of highly stable bonds. Therefore, finding glyphosate-degrading microorganisms in the soil of interest is crucial to remediate this glyphosate. Burkholderia vietnamiensis strain AQ5-12 was found to have glyphosate-degrading ability. Optimisation of biodegradation condition was carried out utilising one factor at a time (OFAT) and response surface methodology (RSM). Five parameters including carbon and nitrogen source, pH, temperature and glyphosate concentration were optimised. Based on OFAT result, glyphosate degradation was observed to be optimum at fructose concentration of 6, 0.5 g/L ammonia sulphate, pH 6.5, temperature of 32 °C and glyphosate concentration at 100 ppm. Meanwhile, RSM resulted in a better degradation with 92.32% of 100 ppm glyphosate compared to OFAT. The bacterium was seen to tolerate up to 500 ppm glyphosate while increasing concentration results in reduced degradation and bacterial growth rate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Ahmad SA, Shukor MY, Shamaan NA et al (2013) Molybdate reduction to molybdenum blue by an Antarctic bacterium. Biomed Res Int 2013:e871941. https://doi.org/10.1155/2013/871941

    Article  Google Scholar 

  2. Balthazor TM, Hallas LE (1986) Glyphosate-degrading microorganisms from industrial activated sludge. Appl Environ Microbiol 51:432–434

    CAS  Google Scholar 

  3. Benslama O, Boulahrouf A (2013) Isolation and characterization of glyphosate-degrading bacteria from different soils of Algeria. Afr J Microbiol Res 7:5587–5595. https://doi.org/10.5897/AJMR2013.6080

    Article  Google Scholar 

  4. Borggaard OK, Gimsing AL (2008) Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag Sci 64:441–456. https://doi.org/10.1002/ps.1512

    CAS  Article  Google Scholar 

  5. Boyd CE, Massaut L (1999) Risks associated with the use of chemicals in pond aquaculture. Aquac Eng 20:113–132. https://doi.org/10.1016/S0144-8609(99)00010-2

    Article  Google Scholar 

  6. Dick RE, Quinn JP (1995) Glyphosate-degrading isolates from environmental samples: occurrence and pathways of degradation. Appl Microbiol Biotechnol 43:545–550

    CAS  Article  Google Scholar 

  7. Duke SO, Powles SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 64:319–325. https://doi.org/10.1002/ps.1518

    CAS  Article  Google Scholar 

  8. El-Gendy NS, Madian HR, Amr SSA (2013) Design and optimization of a process for sugarcane molasses fermentation by Saccharomyces cerevisiae using response surface methodology. Int J Microbiol. https://www.hindawi.com/journals/ijmicro/2013/815631/. Accessed 8 Oct 2017

  9. Fan J, Yang G, Zhao H et al (2012) Isolation, identification and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil. J Gen Appl Microbiol 58:263–271

    CAS  Article  Google Scholar 

  10. Glass RL (1981) Colorimetric determination of glyphosate in water after oxidation to orthophosphate. Anal Chem 53:921–923. https://doi.org/10.1021/ac00229a048

    CAS  Article  Google Scholar 

  11. Hadi F, Mousavi A, Noghabi KA et al (2013) New bacterial strain of the genus Ochrobactrum with glyphosate-degrading activity. J Environ Sci Health Part B 48:208–213. https://doi.org/10.1080/03601234.2013.730319

    CAS  Article  Google Scholar 

  12. Ibrahim HM, Yusoff WMW, Hamid AA et al (2005) Optimization of medium for the production of β-cyclodextrin glucanotransferase using Central Composite Design (CCD). Process Biochem 40:753–758. https://doi.org/10.1016/j.procbio.2004.01.042

    CAS  Article  Google Scholar 

  13. Ibrahim S, Shukor MY, Abdul Khalil K et al (2015) Application of response surface methodology for optimising caffeine-degrading parameters by Leifsonia sp. strain SIU. J Environ Biol 36:1215–1221

    CAS  Google Scholar 

  14. Karamba KI, Shukor MY, Syed MA et al (2015) Isolation, screening and characterisation of cyanide-degrading Serratia marcescens strain AQ07. JCHPS 8:401–406

    Google Scholar 

  15. Karamba KI, Ahmad SA, Zulkharnain A et al (2016) Optimisation of biodegradation conditions for cyanide removal by Serratia marcescens strain AQ07 using one-factor-at-a-time technique and response surface methodology. Rendiconti Lincei 27:533–545. https://doi.org/10.1007/s12210-016-0516-8

    Article  Google Scholar 

  16. Kuklinsky-Sobral J, Araújo WL, Mendes R et al (2005) Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant Soil 273:91–99. https://doi.org/10.1007/s11104-004-6894-1

    CAS  Article  Google Scholar 

  17. Kumari V, Kumar V, Chauhan R et al (2016) Optimization of medium parameters by response surface methodology (RSM) for enhanced production of cutinase from Aspergillus sp. RL2Ct. 3 Biotech 6:149. https://doi.org/10.1007/s13205-016-0460-4

    Article  Google Scholar 

  18. Manogaran M, Shukor MY, Yasid NA et al (2017) Isolation and characterisation of glyphosate-degrading bacteria isolated from local soils in Malaysia. Rendiconti Lincei 28:471. https://doi.org/10.1007/s12210-017-0620-4

    Article  Google Scholar 

  19. Moneke AN, Okpala GN, Anyanwu CU (2010) Biodegradation of glyphosate herbicide in vitro using bacterial isolates from four rice fields. Afr J Biotechnol 9:4067–4074

    CAS  Google Scholar 

  20. Nawawi NM, Ahmad SA, Shukor MY et al (2016) Statistical optimisation for improvement of phenol degradation by Rhodococcus sp. NAM 81. J Environ Biol 37:443–451

    CAS  Google Scholar 

  21. Obojska A, Ternan NG, Lejczak B et al (2002) Organophosphonate utilization by the thermophile Geobacillus caldoxylosilyticus T20. Appl Environ Microbiol 68:2081–2084

    CAS  Article  Google Scholar 

  22. Padgette SR, Taylor NB, Nida DL et al (1996) The composition of glyphosate—tolerant soybean seeds is equivalent to that of conventional soybeans. J Nutr 126:702–7016

    CAS  Article  Google Scholar 

  23. Paungfoo-Lonhienne C, Lonhienne TGA, Yeoh YK et al (2014) A new species of Burkholderia isolated from sugarcane roots promotes plant growth. Microb Biotechnol 7:142–154

    CAS  Article  Google Scholar 

  24. Pipke R, Amrhein N (1988) Degradation of the phosphonate herbicide glyphosate by Arthrobacter atrocyaneus ATCC 13752. Appl Environ Microbiol 54:1293–1296

    CAS  Google Scholar 

  25. Richard S, Moslemi S, Sipahutar H et al (2005) Differential effects of glyphosate and roundup on human placental cells and aromatase. Environ Health Perspect 113:716–720

    CAS  Article  Google Scholar 

  26. Santos PE-DL, Bustillos-Cristales R, Caballero-Mellado J (2001) Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67:2790–2798. https://doi.org/10.1128/AEM.67.6.2790-2798.2001

    CAS  Article  Google Scholar 

  27. Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471. https://doi.org/10.1111/j.1574-6976.2006.00018.x

    CAS  Article  Google Scholar 

  28. Soletto D, Binaghi L, Lodi A et al (2005) Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture 243:217–224. https://doi.org/10.1016/j.aquaculture.2004.10.005

    CAS  Article  Google Scholar 

  29. Suhaila YN, Rosfarizan M, Ahmad SA et al (2013) Nutrients and culture conditions requirements for the degradation of phenol by Rhodococcus UKMP-5M. J Environ Biol 34:635–643

    CAS  Google Scholar 

  30. Sviridov AV, Shushkova TV, Ermakova IT et al (2014) Glyphosate: safety risks, biodegradation, and bioremediation. In: Cao G, Orrù R (eds) Current environmental issues and challenges. Springer, Dordrecht, pp 183–195

    Google Scholar 

  31. Teófilo RF, Reis EL, Reis C et al (2004) Experimental design employed to square wave voltammetry response optimization for the glyphosate determination. J Braz Chem Soc. https://doi.org/10.1590/S0103-50532004000600013

    Google Scholar 

  32. Walia A, Mehta P, Guleria S, Shirkot CK (2015) Improvement for enhanced xylanase production by Cellulosimicrobium cellulans CKMX1 using central composite design of response surface methodology. 3 Biotech 5:1053–1066. https://doi.org/10.1007/s13205-015-0309-2

    Article  Google Scholar 

  33. Yusuf I, Ahmad SA, Phang LY et al (2016) Keratinase production and biodegradation of polluted secondary chicken feather wastes by a newly isolated multi heavy metal tolerant bacterium-Alcaligenes sp. AQ05-001. J Environ Manag 183:182–195

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This project was supported by Putra-IPS fund received from Universiti Putra Malaysia under the Grant number 9486100. We also thank Universiti Putra Malaysia for providing a GRF scholarship to Mr. Motharasan Manogaran.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Siti Aqlima Ahmad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manogaran, M., Shukor, M.Y., Yasid, N.A. et al. Optimisation of culture composition for glyphosate degradation by Burkholderia vietnamiensis strain AQ5-12. 3 Biotech 8, 108 (2018). https://doi.org/10.1007/s13205-018-1123-4

Download citation

Keywords

  • Glyphosate
  • Burkholderia vietnamiensis
  • One-factor-at-time (OFAT)
  • Response surface methodology (RSM)
  • Bioremediation