3 Biotech

, 8:73 | Cite as

Survey of sulfur-oxidizing bacterial community in the Pearl River water using soxB, sqr, and dsrA as molecular biomarkers

  • Jianfei Luo
  • Xiaoqin Tan
  • Kexin Liu
  • Weitie LinEmail author
Original Article


In this study, we surveyed the abundance and diversity of three sulfur oxidation genes (sqr, soxB, and dsrA) using quantitative assays and Miseq high-throughput sequencing. The quantitative assays revealed that soxB is more abundant than sqr and dsrA and is the main contributor to sulfur oxidation. In the diversity analysis, the SOB community mainly comprised the classes Nitrospira, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. The genera Gallionella, Hydrogenophaga, Limnohabitans, Methylomonas, Nitrospira, Rhodoferax, and Sulfuritalea were abundant in the communities for sqr; Dechloromonas, Limnohabitans, Paracoccus, Sulfuritalea, Sulfitobacter, and Thiobacillus were abundant in communities for soxB; Sulfuritalea, Sulfurisoma, and Thiobacillus were abundant in communities for dsrA. This study presented a high diversity of SOB species and functional sulfur-oxidizing genes in Pearl River via high-throughput sequencing, suggesting that the aquatic ecosystem has great potential to scavenge the sulfur pollutants by itself.


Sulfur-oxidizing bacteria Pearl River soxB sqr dsrA High-throughput sequencing 



This work was supported by the National Natural Science Foundation of China (Nos. 21276099; 41301318; 41473072), the Specialized Research Found for the Doctoral Program of Higher Education of China (No. 20120172120045), and the Fundamental Research Funds for the Central Universities (No. 2015ZM171).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest in the publication.


  1. Beller HR, Chain PSG, Letain TE, Chakicherla A, Larimer FW, Richardson PM, Coleman MA, Wood AP, Kelly DP (2006) The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. J Bacteriol 188:1473–1488CrossRefGoogle Scholar
  2. Bertin PN, Heinrich-Salmeron A, Pelletier E, Goulhen-Chollet F, Arsene-Ploetze F, Gallien S, Lauga B, Casiot C, Calteau A, Vallenet D, Bonnefoy V, Bruneel O, Chane-Woon-Ming B, Cleiss-Arnold J, Duran R, Elbaz-Poulichet F, Fonknechten N, Giloteaux L, Halter D, Koechler S, Marchal M, Mornico D, Schaeffer C, Smith AA, Van Dorsselaer A, Weissenbach J, Médigue C, Le Paslier D (2011) Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics. ISME J 5:1735–1747CrossRefGoogle Scholar
  3. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefGoogle Scholar
  4. Chan LK, Morgan-Kiss RM, Hanson TE (2009) Functional analysis of three sulfide:quinine oxidoreductase homologs in Chlorobaculum tepidum. J Bacteriol 191:1026–1034CrossRefGoogle Scholar
  5. Chung BS, Ryu SH, Park M, Jeon Y, Chung YR, Jeon CO (2007) Hydrogenophaga caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 57:1126–1130CrossRefGoogle Scholar
  6. Cytryn E, van Rijn J, Schramm A, Gieseke A, de Beer D, Minz D (2005) Identification of bacteria potentially responsible for oxic and anoxic sulfide oxidation in biofilters of a recirculating mariculture system. Appl Environ Microbiol 71:6134–6141CrossRefGoogle Scholar
  7. Dahl C, Engels S, Pott-Sperling AS, Schulte A, Sander J, Lubbe Y, Deuster O, Brune DC (2005) Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J Bacteriol 187:1392–1404CrossRefGoogle Scholar
  8. Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (2006) The prokaryotes: volume 7 Proteobacteria: delta and epsilon subclasses; deeply rooting bacteria third edition. Springer, New YorkGoogle Scholar
  9. Emerson D, Field EK, Chertkov O, Davenport KW, Goodwin L, Munk C, Nolan M, Woyke T (2013) Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematic. Front Microbiol 4:1–17CrossRefGoogle Scholar
  10. Finneran KT, Johnsen CV, Lovely DP (2003) Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). Int J Syst Evol Microbiol 53:669–673CrossRefGoogle Scholar
  11. Fogo JK, Popowsky M (1949) Spectrophotometric determination of hydrogen sulfide. Analy Chem 21:732–734CrossRefGoogle Scholar
  12. Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67:2873–2882CrossRefGoogle Scholar
  13. Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fisher J (2005) Prokaryotic sulfur oxidation. Current Opin Microbiol 8:253–259CrossRefGoogle Scholar
  14. Ghosh W, Dam B (2009) Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev 33:999–1043CrossRefGoogle Scholar
  15. Graff A, Stubner S (2003) Isolation and molecular characterization of thiosulfate-oxidizing bacteria from an Italian rice field soil. Syst Appl Mcirobiol 26:445–452CrossRefGoogle Scholar
  16. Gregersen LH, Bryant DA, Frigaard NU (2011) Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria. Front Microbiol 2:116CrossRefGoogle Scholar
  17. Herrmann M, Rusznyák A, Akob DM, Schulze I, Opitz S, Totsche KU, Küsel K (2015) Large fractions of CO2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds. Appl Environ Microbiol 81:2384–2394CrossRefGoogle Scholar
  18. Kasalický V, Jezbera J, Hahn MW, Šimek K (2013) The diversity of the Limnohabitans genus, an important group of freshwater Bacterioplankton, by characterization of 35 isolated strains. PLoS ONE 8:e58209CrossRefGoogle Scholar
  19. Kleiner M, Petersen JM, Dubilier N (2012) Convergent and divergent evolution of metabolism in sulfur-oxidizing symbionts and the role of horizontal gene transfer. Current Opinion Microbiol 15:621–631CrossRefGoogle Scholar
  20. Koch H, Lücker S, Albertsen M, Kitzinger K, Herbold C, Spieck E, Nielsen PH, Wagner M, Daims H (2015) Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc Natl Acad Sci USA 112:11371–11376CrossRefGoogle Scholar
  21. Koenig A, Zhang T, Liu LH, Fang HHP (2005) Microbial community and biochemistry process in autosulfurotrophic denitrifying biofilm. Chemosphere 58:1041–1047CrossRefGoogle Scholar
  22. Kojima H, Fukui M (2011) Sulfuritalea hydrogenivorans gen nov, sp. nov., a facultative autotroph isolated from a freshwater lake. Int J Syst Evol Microbiol 61:1651–1655CrossRefGoogle Scholar
  23. Kojima H, Fukui M (2014) Sulfuritalea sediminicola gen nov, sp. nov., a facultative autotroph isolated from a freshwater lake. Int J Syst Evol Microbiol 64:1587–1592CrossRefGoogle Scholar
  24. Kojima H, Watanabe T, Iwata T, Fukui M (2014) Identification of major planktonic sulfur oxidizers in stratified freshwater lake. PLoS ONE 9:e93877CrossRefGoogle Scholar
  25. Lücker S, Wagner M, Maixner F, Pelletier E, Koch H, Vacherie B, Rattei T, Damsté JS, Spieck E, Le Paslier D, Daims H (2010) A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc Natl Acad Sci USA 107:13479–13484CrossRefGoogle Scholar
  26. Luo JF, Lin WT, Guo Y (2011) Functional genes based analysis of sulfur-oxidizing bacteria community in sulfide removing bioreactor. Appl Microbiol Biotechnol 90:769–778CrossRefGoogle Scholar
  27. Lütters-Czekalla S (1990) Lithoautotrophic growth of the iron bacterium Gallionella ferruginea with thiosulfate or sulfide as energy source. Arch Microbiol 154:417–421CrossRefGoogle Scholar
  28. Maestre JP, Rovira R, Kinney KA, Lafuente J, Gabriel D (2009) Characterization of the bacterial community in a biotrickling filter treating high loads of H2S by molecular biology tools. Water Sci Technol 59:1331–1337CrossRefGoogle Scholar
  29. Meyer B, Imhoff JF, Kuever J (2007) Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria-evolution of the Sox sulfur oxidation enzyme system. Environ Microbiol 9:2957–2977CrossRefGoogle Scholar
  30. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49CrossRefGoogle Scholar
  31. Park JR, Bae JW, Nam YD, Chang HW, Kwon HY, Quan ZX, Park YH (2007) Sulfitobacter litoralis sp. nov., a marine bacterium isolated from the East Sea, Korea. Int J Syst Evol Microbiol 57:692–695CrossRefGoogle Scholar
  32. Pukall R, Buntefuß D, Fruhling A, Rohde M, Kroppenstedt RM, Burghardt J, Lebaron P, Bernard L, Stackebrandt E (1999) Sulfitobacter mediterraneus sp. nov., a new sulfite-oxidizing member of the α-Proteobacteria. Int J Syst Evol Microbiol 49:513–519Google Scholar
  33. Rother D, Henrich HJ, Quentmeier A, Bardischewsky F, Friedrich CG (2001) Novel genes of sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for a general sulfur oxidizing system in Paracoccus pantotrophus GB17. J Bacteriol 183:4499–4508CrossRefGoogle Scholar
  34. Sahu AK, Conneely T, Nusslein KR, Ergas SJ (2009) Biological perchlorate reduction in packed bed reactors using elemental sulfur. Environ Sci Technol 43:4466–4471CrossRefGoogle Scholar
  35. Salinero KK, Keller K, Feil WS, Feil H, Trong S, Bartolo GD, Lapidus A (2009) Metabolic analysis of the soil microbe Dechloromonas aromatic str RCB: indications of a surprisingly complex lift-style and cryptic anaerobic pathways for aromatic degradation. BMC Genomic 10:351CrossRefGoogle Scholar
  36. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefGoogle Scholar
  37. Sorokin DY (1995) Sulfitobacter pontiacus gen. nov., sp. nov—a new heterotrophic bacterium from the Black Sea, specialized on sulfite oxidation. Microbiology 64:295–305Google Scholar
  38. Speth DR, In’t Zandt MH, Guerrero-Cruz S, Duthilh BE, Jetten MSM (2016) Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system. Nat Commun 7:11172CrossRefGoogle Scholar
  39. Tabatabai MA, Bremner JM (1970) An alkaline oxidation method for determination of total sulfur in soils. Soil Sci Soc America J 34:62–65CrossRefGoogle Scholar
  40. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefGoogle Scholar
  41. ter Braak CJF, Smilauer P (2002) Canoco reference manual and CanoDraw for windows user’s guide: software for canonical community ordination (version 45). Microcomputer Power, New YorkGoogle Scholar
  42. Theissen U, Hoffmeister M, Grieshaber M, Martin W (2003) Single eubacterial origin of eukaryotic sulfide:quinone oxidoreductase, a mitochondrial enzyme conserved from the early evolution of eukaryotes during anoxic and sulfidic times. Mol Biol Evol 20:1564–1574CrossRefGoogle Scholar
  43. Thomas F, Giblin AE, Cardon ZG, Sievert SM (2014) Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments. Front Microbiol 5:309Google Scholar
  44. Tian H, Gao P, Chen Z, Li Y, Li Y, Wang Y, Zhou J, Li G, Ma T (2017) Compositions and abundances of sulfate-reducing and sulfur-oxidizing microorganisms in water-flooded petroleum reservoirs with different temperatures in China. Front Microbiol 8:143Google Scholar
  45. Tourna M, Maclean P, Condron L, O’Callaghan M, Wakelin SA (2014) Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis. FEMS Microbiol Ecol 3:538–549CrossRefGoogle Scholar
  46. Tourova TP, Slobodova NV, Bumazhkln BK, Kolganova TV, Muyzer G, Sorokin DY (2013) Analysis of community composition of sulfur-oxidizing bacteria in hypersaline and soda lakes using soxB as a functional molecular maker. FEMS Microbiol Ecol 84:280–289CrossRefGoogle Scholar
  47. Wang J, Muyzer G, Bodelier PLE, Laanbroek HJ (2009) Diversity of iron oxidizers in wetland soils revealed by novel 16S rRNA primers targeting Gallionella-related bacteria. ISME J 3:715–725CrossRefGoogle Scholar
  48. Wang J, Vollrath S, Behrends T, Bodelier PLE, Muyzer G, Meima-Franke M, Den Oudsten F, Van Cappellen P, Laanbroek HJ (2011) Distribution and diversity of Gallionella-like neutrophilic iron oxidizers in a tidal freshwater marsh. Appl Environ Microbiol 77:2337–2344CrossRefGoogle Scholar
  49. Watanabe T, Kojima H, Fukui M (2014) Complete genomes of freshwater sulfur oxidizers Sulfuritalea denitrificans skB26 and Sulfuritalea hydrogenivorans sk43H: genetic insights into the sulfur oxidation pathway of Betaproteobacteria. Syst Appl Microbiol 37:387–395CrossRefGoogle Scholar
  50. Yoon JH, Kang SJ, Ryu SH, Jeon CO, Oh TK (2008) Hydrogenophaga bisanensis sp. nov, isolated from wastewater of a textile dye works. Int J Syst Evol Microbiol 58:393–397CrossRefGoogle Scholar
  51. Zeng Y, Kasalický V, Šimek K, Koblížek M (2012) Genome sequences of two freshwater Betaproteobacterial isolates, Limnohabitans species strains Rim28 and Rim47, indicate their capabilities as both photoautotrophs and ammonia oxidizers. J Bacteriol 194:6302–6303CrossRefGoogle Scholar
  52. Zhao X, Zhang X, Li N, Shao S, Geng Y (2017) Decoupling economic growth from carbon dioxide emissions in China: a sectoral factor decomposition analysis. J Clean Product 142:3500–3516CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations