Skip to main content
Log in

Molecular modeling and in silico characterization of GmABCC5: a phytate transporter and potential target for low-phytate crops

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Designing low-phytate crops without affecting the developmental process in plants had led to the identification of ABCC5 gene in soybean. The GmABCC5 gene was identified and a partial gene sequence was cloned from popular Indian soybean genotype Pusa16. Conserved domains and motifs unique to ABC transporters were identified in the 30 homologous sequences retrieved by BLASTP analysis. The homologs were analyzed for their evolutionary relationship and physiochemical properties. Conserved domains, transmembrane architecture and secondary structure of GmABCC5 were predicted with the aid of computational tools. Analysis identified 53 alpha helices and 31 beta strands, predicting 60% residues in alpha conformation. A three-dimensional (3D) model for GmABCC5 was developed based on 5twv.1.B (Homo sapiens) template homology to gain better insight into its molecular mechanism of transport and sequestration. Spatio-temporal real-time PCR analysis identified mid-to-late seed developmental stages as the time window for the maximum GmABCC5 gene expression, a potential target stage for phytate reduction. Results of this study provide valuable insights into the structural and functional characteristics of GmABCC5, which may be further utilized for the development of nutritionally enriched low-phytate soybean with improved mineral bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

ABC:

ATP-binding cassette transporter

ABCC5 :

ABC transporter subfamily C member 5

Gm :

Glycine max

PEPCo:

PEP carboxylase

PDB:

Protein Data Bank

NJ:

Neighbor joining

MW:

Molecular weight

pI:

Isoelectric pH

EC:

Extinction coefficient

Ai:

Aliphatic index

Ii:

Instability index

GRAVY:

Grand average hydropathy

References

  • Baum D (2008) Reading a phylogenetic tree: the meaning of monophyletic groups. Nat Educ 1(1):190–196

    Google Scholar 

  • Bhati KK, Alok A, Kumar A, Kaur J, Tiwari S, Pandey AK (2016) Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation. J Exp Bot. https://doi.org/10.1093/jxb/erw224

    Google Scholar 

  • Buchan DWA, Minneci F, Nugent TCO, Bryson K, Jones DT (2013) Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res 41(W1):W340–W348

    Article  Google Scholar 

  • Cozzetto D, Jones DT (2013) The contribution of intrinsic disorder prediction to the elucidation of protein function. Curr Opin Struct Biol 23:467–472

    Article  CAS  Google Scholar 

  • Cozzetto D, Minneci F, Currant H, Jones DT (2016) FFPred 3: feature-based function prediction for all Gene Ontology domains. Sci Rep 6:31865. https://doi.org/10.1038/srep31865

    Article  CAS  Google Scholar 

  • Dahl SG, Sylte I, Aina Ravna AW (2004) Structures and models of transporter proteins. J Pharmacol Exp Ther 309(3):853–860

    Article  CAS  Google Scholar 

  • Dong J, Yan W, Bock C, Nokhrina K, Keller W, Georges F (2012) Perturbing the metabolic dynamics of myo-inositol in developing Brassica napus seeds through in vivo methylation impacts its utilization as phytate precursor and affects downstream metabolic pathways. BMC Plant Biol 13:84

    Article  Google Scholar 

  • Dorsch JA, Cook A, Young KA, Anderson JM, Bauman AT, Volkmann CJ, Murthy PPN, Raboy V (2003) Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Phytochemistry 62:691–706

    Article  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunakm S, Heijne GV (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  CAS  Google Scholar 

  • Ferre F, Clote P (2005) DiANNA: a web server for disulfide connectivity prediction. Nucleic Acids Res 1:230–232

    Article  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy Server. In: Walker J (ed) The proteomics protocols handbook. Humana Press, New York, pp 571–607

    Chapter  Google Scholar 

  • Greenwood JS, Bewley JD (1984) Subcellular distribution of phytin in the endosperm of developing castor bean: a possibility for its synthesis in the cytoplasm prior to deposition within protein bodies. Planta 160:113–120

    Article  CAS  Google Scholar 

  • Gupta SK, Rai AK, Kanwar SS, Sharma TR (2012) Comparative analysis of zinc finger proteins involved in plant disease resistance. PLoS One 7(8):e42578. https://doi.org/10.1371/journal.pone.0042578

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Window 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hatzack F, Hübel F, Zhang W, Hansen PE, Rasmussen SK (2001) Inositol phosphates from barley low-phytate grain mutants analysed by metal-dye detection HPLC and NMR. Biochem J 354:473–480

    Article  CAS  Google Scholar 

  • Hu B, Jin J, Guo A, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297

    Article  Google Scholar 

  • Israel DW, Talierico E, Kwanyuen P, Burton JW, Dean L (2011) Inositol metabolism in developing seeds of low and normal phytic acid soybean lines. Crop Sci 51:282–289

    Article  Google Scholar 

  • Jones PM, George AM (2002) Mechanism of ABC transporters: a molecular dynamics simulation of a well characterized nucleotide-binding subunit. Proc Natl Acad Sci USA 99:12639–12644

    Article  CAS  Google Scholar 

  • Jones PM, George AM (2012) Role of the D-loops in allosteric control of ATP hydrolysis in an ABC transporter. J Phys Chem A 116:3004–3013

    Article  CAS  Google Scholar 

  • Kallberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J (2012) Template-based protein structure modeling using the RaptorX web server. Nat Protoc 7(8):1511–1522

    Article  CAS  Google Scholar 

  • Kerr ID (2002) Structure and association of ATP-binding cassette transporter nucleotide-binding domains. Biochim Biophys Acta 1561:47–64

    Article  CAS  Google Scholar 

  • Kulkarni PA, Devarumath RM (2014) In silico 3Dstructure prediction of SsMYB2R: a novel MYB transcription factor from Saccharum spontaneum. Indian J Biotech 13:437–447

    CAS  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2∆∆C(T) method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  • Loewus FA, Murthy PPN (2000) myo-inositol metabolism in plants. Plant Sci 150:1–19

    Article  CAS  Google Scholar 

  • López-Marqués RL, Poulsen LR, Bailly A, Geisler M, Pomorski TG, Palmgren MG (2015) Structure and mechanism of ATP-dependent phospholipid transporters. Biochim Biophys Acta 1850(3):461–475

    Article  Google Scholar 

  • Lott JNA, Ockenden I, Raboy V, Batten GD (2000) Phytic acid and phosphorus in crop seeds and fruits: a global estimate. Seed Sci Res 10:11–33

    CAS  Google Scholar 

  • Lovell SC, Davis IW, Arendall WB, de Bakker PI, Word JM (2003) Structure validation by C alpha geometry: phi, psi and C beta deviation. Proteins 50:437–450

    Article  CAS  Google Scholar 

  • Low MG (1989) Glycosyl-phosphatidylinositol: a versatile anchor for cell surface proteins. FASEB J 3:1600–1608

    Article  CAS  Google Scholar 

  • Maroof M, Glover N, Biyashev R, Buss G, Grabau E (2009) Genetic basis of the low-phytate trait in the soybean line CX1834. Crop Sci 49:69–76

    Article  CAS  Google Scholar 

  • Moussatova A, Kandt C, O’Mara ML, Tieleman DP (2008) ATP-binding cassette transporters in Escherichia coli. Biochim Biophys Acta 1778:1757–1771

    Article  CAS  Google Scholar 

  • Nagy R, Grob H, Weder B, Green P, Klein M, Frelet-Barrand A, Schjoerring JK, Brearley C, Martinoia E (2009) The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signalling and phytate storage. J Biol Chem 284:33614–33622

    Article  CAS  Google Scholar 

  • Nandi SN, Mehra AM, Lynn Bhattacharya A (2005) Comparison of theoretical proteomes: identification of COGs with conserved and variable pI within the multimodal pI distribution. BMC Genom 6:116

    Article  Google Scholar 

  • Nugent T, Jones DT (2009) Transmembrane protein topology prediction using support vector machines. BMC Bioinform 10:159

    Article  Google Scholar 

  • Pandey V, Krishnan V, Basak N, Hada A, Punjabi M, Jolly M, Lal SK, Singh SB, Sachdev A (2016) Phytic acid dynamics during seed development and it’s composition in yellow and black Indian soybean (Glycine max L.) genotypes through a modified HPLC method. J Plant Biochem Biot 25(4):367–374

    Article  CAS  Google Scholar 

  • Panzeri D, Cassani E, Doria E et al (2011) A defective ABC transporter of the MRP family, responsible for the bean lpa1 mutation, affects the regulation of the phytic acid pathway, reduces seed myo-inositol and alters ABA sensitivity. New Phytol 191:70–83

    Article  CAS  Google Scholar 

  • Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg E, Man O, Beckmann JS, Silman I, Sussman JL (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21(16):3435–3438

    Article  CAS  Google Scholar 

  • Raboy V (1997) Accumulation and storage of phosphate and minerals. In: BA Larkins, Vasil IK (eds) Cellular and molecular biology of plant seed development, pp 441–477

  • Raboy V (2001) Seeds for a better future: ‘low phytate’, grains help to overcome malnutrition and reduce pollution. Trends Plant Sci 6:458–462

    Article  CAS  Google Scholar 

  • Raboy V (2002) Progress in breeding low phytate crops. J Nutr 132:503S–505S

    Article  Google Scholar 

  • Raboy V (2003) Myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry 64:1033–1043

    Article  CAS  Google Scholar 

  • Raboy V, Dickinson DB (1987) The timing and rate of phytic acid accumulation in developing soybean seeds. Plant Physiol 85:841–844

    Article  CAS  Google Scholar 

  • Rasmussen SR, Ingvardsen CR, Torp AM (2010) Mutations in genes controlling the biosynthesis and accumulation of inositol phosphates in seeds. Biochem Soc Trans 38:689–694

    Article  CAS  Google Scholar 

  • Reehana N, Ahamed AP, Ali DM, Suresh A, Kumar RA, Thajuddin N (2013) Structure based computational analysis and molecular phylogeny of C-Phycocyanin gene from the selected cynobacteria. Int J Biol Vet Agric Food Eng 7:47–51

    Google Scholar 

  • Regvar M, Eichert D, Kaulich B, Gianoncelli A, Pongrac P, Vogel-Mikus K, Kreft I (2011) New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy. J Exp Bot 62:3929–3939

    Article  CAS  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) Emboss: the European molecular biology open software suite. Trends Genet 16(6):276–277

    Article  CAS  Google Scholar 

  • Rogers S, Wells R, Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234(4774):364-368

  • Schmees G, Stein A, Hunke S, Landmesser H, Schneider E (1999) Functional consequences of mutations in the conserved ‘signature sequence’ of the ATP-binding cassette protein MalK. Eur J Biochem 266:420–430

    Article  CAS  Google Scholar 

  • Schulz B, Kolukisaoglum HU (2006) Genomics of plant ABC transporters: the alphabet of photosynthetic life forms or just holes in membranes? FEBS Lett 580(4):1010–1016

    Article  CAS  Google Scholar 

  • Schwartz R, Ting CS, King J (2001) Whole proteome pI values correlate with subcellular localizations of proteins for organisms within the three domains of life. Genome Res 11(5):703–709

    Article  CAS  Google Scholar 

  • Shi J, Wang H, Schellin K, Li B, Faller M, Stoop JM, Meeley RB, Ert DS, Ranch JP, Glassman K (2007) Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol 25:930–937

    Article  CAS  Google Scholar 

  • Shunmugam ASK, Bock C, Arganosam GC, Georges F, Gray GR, Warkentin TD (2015) Accumulation of phosphorus-containing compounds in developing seeds of low-phytate pea (Pisum sativum L.). Mutants Plants 4:1–26

    CAS  Google Scholar 

  • Singh R, Pandey PN (2015) Molecular docking and molecular dynamics study on SmHDAC1 to identify potential lead compounds against Schistosomiasis. Mol Biol Rep 42:689–698

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  Google Scholar 

  • Vetter IR, Wittinghofer A (1999) Nucleoside triphosphate-binding proteins: different scaffolds to achieve phosphoryl transfer. Q Rev Biophys 32:1–56

    Article  CAS  Google Scholar 

  • Wang S, Li W, Liu S, Xu J (2016) RaptorX-property: a web server for protein structure property prediction. Nucleic Acids Res 44:W430–W435. https://doi.org/10.1093/nar/gkw306

    Article  CAS  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  Google Scholar 

  • Wright PE, Dyson HJ (2015) Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 16:18–29

    Article  CAS  Google Scholar 

  • Xu XH, Zhao HJ, Liu QL, Frank T, Engel KH, An G, Shu QY (2009) Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds. Theor Appl Genet 119:75–83

    Article  CAS  Google Scholar 

  • Zaitseva J, Jenewein S, Jumpertz T, Holland IB, Schmitt L (2005) H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB. EMBO J 24:1901–1910

    Article  CAS  Google Scholar 

  • Zaitseva J, Oswald C, Jumpertz T, Jenewein S, Wiedenmann A, Holland IB, Schmitt L (2006) A structural analysis of asymmetry required for catalytic activity of an ABC-ATPase domain dimer. EMBO J 25:3432–3443

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Department of Science and Technology, Government of India, in the form of INSPIRE fellowship (IF120064). Funding by the National Fund for Basic, Strategic and Frontier Application Research in Agriculture (RNAi 20-11), Indian Council of Agricultural Research, is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Sachdev.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, V., Krishnan, V., Basak, N. et al. Molecular modeling and in silico characterization of GmABCC5: a phytate transporter and potential target for low-phytate crops. 3 Biotech 8, 54 (2018). https://doi.org/10.1007/s13205-017-1053-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-1053-6

Keywords

Navigation