Abstract
Enzyme immobilization using hydrogels is a low-cost and effective system for the degradation of bulk pectin derived from orange industry residues. Polygalacturonases obtained from four different bacterial strains of Streptomyces genus were immobilized in alginate gel and assayed for pectin hydrolysis. The enzyme from Streptomyces halstedii ATCC 10897 proved to be superior and more stable within the alginate matrix. Furthermore, a new strategy to improve alginate bead stability using a mixture of calcium and strontium is reported; this technique allowed enhancing the mechanical properties by combining different amounts of these cations for ionotropic gelation. The developed biocatalyst showed maximum hydrolysis at 2 h, generating 1.54 mg/mL of reducing sugars and decreasing the viscosity of polygalacturonic acid by 98.9%. Reusability up to 29 successive reactions (58 h) demonstrated a very stable performance. The heterogeneous biocatalyst was used in the enzymatic saccharification of orange peel albedo (2.23 mg/mL) for adding value to this agro-waste by industrial exploitation.


Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Andriani D, Sunwoo C, Ryu H-W et al (2012) Immobilization of cellulase from newly isolated strain Bacillus subtilis TD6 using calcium alginate as a support material. Bioprocess Biosyst Eng 35:29–33. doi:10.1007/s00449-011-0630-z
Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6:623–633. doi:10.1002/mabi.200600069
Bogra P, Kumar A, Kuhar K et al (2013) Immobilization of tomato (Lycopersicon esculentum) pectinmethylesterase in calcium alginate beads and its application in fruit juice clarification. Biotechnol Lett 35:1895–1900. doi:10.1007/s10529-013-1278-3
Bolivar JM, Eisl I, Nidetzky B (2015) Advanced characterization of immobilized enzymes as heterogeneous biocatalysts. Catal Today 259:66–80. doi:10.1016/j.cattod.2015.05.004
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3
Cappa VA, Rivero CW, Britos CN et al (2014) An efficient biocatalytic system for floxuridine biosynthesis based on Lactobacillus animalis ATCC 35046 immobilized in Sr-alginate. Process Biochem 49:1169–1175. doi:10.1016/j.procbio.2014.03.029
Combo AMM, Aguedo M, Goffin D et al (2012) Enzymatic production of pectic oligosaccharides from polygalacturonic acid with commercial pectinase preparations. Food Bioprod Process 90:588–596. doi:10.1016/j.fbp.2011.09.003
Davidovich-Pinhas M, Bianco-Peled H (2010) A quantitative analysis of alginate swelling. Carbohydr Polym 79:1020–1027. doi:10.1016/j.carbpol.2009.10.036
Ertan F, Yagar H, Balkan B (2007) Optimization of α-amylase immobilization in calcium alginate beads. Prep Biochem Biotechnol 37:195–204. doi:10.1080/10826060701386679
Gangadharan D, Madhavan Nampoothiri K, Sivaramakrishnan S, Pandey A (2009) Immobilized bacterial α-amylase for effective hydrolysis of raw and soluble starch. Food Res Int 42:436–442. doi:10.1016/j.foodres.2009.02.008
Garg G, Singh A, Kaur A et al (2016) Microbial pectinases: an ecofriendly tool of nature for industries. 3 Biotech 6:1–13. doi:10.1007/s13205-016-0371-4
Hiteshi K, Chauhan S, Gupta R (2013) Immobilization of microbial pectinases: a review. CIBTech J Biotechnol 2:37–52
Li T, Wang N, Li S et al (2007) Optimization of covalent immobilization of pectinase on sodium alginate support. Biotechnol Lett 29:1413–1416. doi:10.1007/s10529-007-9409-3
Mørch ÄA, Donati I, Strand BL, Skja G (2006) Effect of Ca 2+, Ba 2+, and Sr 2+ on alginate microbeads. Biomacromol 7:1471–1480
Pawar SN, Edgar KJ (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33:3279–3305. doi:10.1016/j.biomaterials.2012.01.007
Prabasari I, Pettolino F, Liao ML, Bacic A (2011) Pectic polysaccharides from mature orange (Citrus sinensis) fruit albedo cell walls: sequential extraction and chemical characterization. Carbohydr Polym 84:484–494. doi:10.1016/j.carbpol.2010.12.012
Ramírez-Tapias YA, Rivero CW, Britos CN, Trelles JA (2015) Alkaline and thermostable polygalacturonase from Streptomyces halstedii ATCC 10897 with applications in waste waters. Biocatal Agric Biotechnol. doi:10.1016/j.bcab.2014.12.004
Ramírez-Tapias YA, Rivero CW, Gallego FL et al (2016) Stabilization by multipoint covalent attachment of a biocatalyst with polygalacturonase activity used for juice clarification. Food Chem 208:252–257. doi:10.1016/j.foodchem.2016.03.086
Sharma N, Rathore M, Sharma M (2013) Microbial pectinase: sources, characterization and applications. Rev Environ Sci Biotechnol 12:45–60. doi:10.1007/s11157-012-9276-9
Trelles JA, Rivero CW (2013) Whole cell entrapment techniques. In: Guisa JM (ed) Immobilization of enzymes and cells, 3rd edn. Humana Press, Madrid, pp 365–374
Acknowledgements
This research was supported by Agencia Nacional de Promoción Científica y Tecnológica (PICT 2013-2658), Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 2014-KA5-00805) and Universidad Nacional de Quilmes (PUNQ 1409/15). ASLL is a CIC research fellow.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Ramírez-Tapias, Y.A., Lapasset Laumann, A.S., Britos, C.N. et al. Saccharification of citrus wastes by immobilized polygalacturonase in an improved alginate matrix. 3 Biotech 7, 380 (2017). https://doi.org/10.1007/s13205-017-1010-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s13205-017-1010-4