Skip to main content

Advertisement

Log in

Bacterial laccase: recent update on production, properties and industrial applications

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Laccases (benzenediol: oxygen oxidoreductase, EC 1.10.3.2) are multi-copper enzymes which catalyze the oxidation of a wide range of phenolic and non-phenolic aromatic compounds in the presence or absence of a mediator. Till date, laccases have mostly been isolated from fungi and plants, whereas laccase from bacteria has not been well studied. Bacterial laccases have several unique properties that are not characteristics of fungal laccases such as stability at high temperature and high pH. Bacteria produce these enzymes either extracellularly or intracellularly and their activity is in a wide range of temperature and pH. It has application in pulp biobleaching, bioremediation, textile dye decolorization, pollutant degradation, biosensors, etc. Hence, comprehensive information including sources, production conditions, characterization, cloning and biotechnological applications is needed for the effective understanding and application of these enzymes at the industrial level. The present review provides exhaustive information of bacterial laccases reported till date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Archibald FS (1992) A new assay for lignin-type peroxidases employing the dye azure B. Appl Environ Microbiol 58:3110–3116

    CAS  Google Scholar 

  • Arunkumar T, Alexanand D, Narendrakumar G (2014) Application of response surface methodology (RSM)-CCD for the production of laccase using submerged fermentation. Int J Pharm Bio Sci 5(4):429–438

    CAS  Google Scholar 

  • Ba S, Kumar VV (2017) Recent developments in the use tyrosinase and laccase in environement applications. Crit Rev Biotechnol. doi:10.1080/07388551.2016.1261081

    Google Scholar 

  • Brissos V, Ferreira M, Grass G, Martins LO (2015) Turning a hyperthermostable metallo-oxidase into a laccase by directed evolution. ACS Catal 5:4932–4941

    Article  CAS  Google Scholar 

  • Cañas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28:694–705

    Article  CAS  Google Scholar 

  • Chandra R, Chowdhary P (2015) Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ Sci Process Impacts 17:326–342

    Article  CAS  Google Scholar 

  • Chauhan PS, Gupta N (2016) Insight into microbial mannosidase: a review. Crit Rev Biotechnol 8:1–12

    Google Scholar 

  • Chauhan PS, Jaiswar S (2017) Molecular dynamic simulation studies of bacterial thermostable mannanase unwinding the enzymatic catalysis. Biocatal Agric Biotechnol 9:41–47

    Google Scholar 

  • Chauhan PS, Saxena A (2016) Bacterial carrageenases: an overview of production and biotechnological applications. 3 Biotech 6:1–18

    Article  Google Scholar 

  • Chauhan PS, Puri N, Sharma P, Gupta N (2012) Mannanases: microbial sources, production, properties and potential biotechnological applications. Appl Microbiol Biotechnol 93(5):1817–1830

    Article  CAS  Google Scholar 

  • Chauhan PS, Sharma P, Puri N, Gupta N (2014a) Purification and characterization of an alkali-thermo-stable β-mannanase from Bacillus nealsonii PN-11 and its application in manno-oligosaccharides preparation having prebiotic potential. Eur Food Res Technol 238:927–936

    Article  CAS  Google Scholar 

  • Chauhan PS, Sharma P, Puri N, Gupta N (2014b) A process for reduction in viscosity of coffee extract by enzymatic hydrolysis of mannan. Bioproc Biosyst Eng 37(7):1459–1467

    Article  CAS  Google Scholar 

  • Chauhan PS, Bharadwaj A, Puri N, Gupta N (2014c) Optimization of medium composition for alkali-thermostable mannanase production by Bacillus nealsonii PN-11 in submerged fermentation. Int J Curr Microbiol App Sci 3(10):1033–1045

    CAS  Google Scholar 

  • Chauhan PS, Tripathi SP, Sangamwar AT, Puri N, Sharma P, Gupta N (2015) Cloning, molecular modeling and docking analysis of alkali-thermostable β-mannanase from Bacillus nealsonii PN-11. Appl Microbiol Biotechnol 99:8917–8925

    Article  CAS  Google Scholar 

  • Chaurasia PK, Bharati SL, Singh SK (2013) Comparative studies on the blue and yellow laccases. Res Plant Sci 1:32–37

    Google Scholar 

  • Christopher LP, Yao B, Ji Y (2014) Lignin biodegradation with laccase-mediator systems. Front Energy Res. doi:10.3389/fenrg.2014.00012

    Google Scholar 

  • Couto SR, Herrera LT (2006) Lacasses in the textile industry. Biotechnol Mol Biol Rev 1:115–120

    Google Scholar 

  • Dalfard AB, Khajeh K, Soudi MR, Naderi-Manesh H, Ranjbar B, Sajedi RH (2006) Isolation and biochemical characterization of laccase and tyrosinase activities in a novel melanogenic soil bacterium. Enzyme Microb Technol 39:1409–1416

    Article  CAS  Google Scholar 

  • Davidia L, Moraïsa S, Artzia L, Knopb D, Hadarb Y, Arfia Y, Bayera EA (2016) Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome. Pro Nat Acad Sci USA 113(39):10854–10859

    Article  CAS  Google Scholar 

  • Dekker R, Ling KL, Barbosa AM (2000) A simple method for monitoring chromatography column eluates for laccase activity during enzyme purification. Biotechnol Lett 22:105–108

    Article  CAS  Google Scholar 

  • Demissie AG, Kumar A (2014) Isolation of novel bacteria isolate from soil for production of extra-cellular laccase enzyme. Int J Emerg Technol Adv Eng 4:404–407

    Google Scholar 

  • Devasia S, Nair JA (2016) Screening of potent laccase producing organisms based on the oxidation pattern of different phenolic substrates. Int J Curr Microbiol App Sci 5:127–137

    Article  Google Scholar 

  • Devi P, Kandasamy S, Chendrayan K, Uthandi S (2016) Laccase producing Streptomyces bikiniensis CSC12 isolated from compost. J Microb Biotech Food Sci 6:794–798

    Article  Google Scholar 

  • Dhaeseleer P, Gladden JM, Allgaier M, Chain PSG, Tringe SG, Malfatti SA, Aldrich JT, Nicora CD, Robinson EW, Pasˇa-Tolic L, Hugenholtz P, Simmons BA, Singer SW (2013) Proteogenomic analysis of a thermophilic bacterial consortium adapted to deconstruct switchgrass. PLoS ONE 8(7):e68465

    Article  CAS  Google Scholar 

  • Dhiman K, Shirkot P (2015) Bioprospecting and molecular characterization of laccase producing bacteria from paper mills of Himachal Pradesh. Proc Natl Acad Sci India Sect B 85:1095–1103

    Article  CAS  Google Scholar 

  • Diamantidis G, Effosse A, Potier P, Bally R (2000) Purifcation and characterization of the frst bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol Biochem 32:919–927

    Article  CAS  Google Scholar 

  • Du W, Sun C, Liang J, Han Y, Yu J, Liang Z (2015) Improvement of laccase production and its characterization by mutagenesis. J Food Biochem 39:101–108

    Article  CAS  Google Scholar 

  • Enguita FJ, Matias PM, Martins LO, PlaÂcido D, Henriquesa AO, Carrondoa MA (2002) Spore-coat laccase CotA from Bacillus subtilis: crystallization and preliminary X-ray characterization by the MAD method. Acta Cryst 58:1490–1493

    Google Scholar 

  • Enguita FJ, Martins LO, Henriquesa AO, Carrondoa MA (2003) Crystal structure of a bacterial endospore coat component. J Biol Chem 278:9416–19425

    Article  CAS  Google Scholar 

  • Fang ZM, Li TL, Chang F, Zhou P, Fang W, Hong YZ, Zhang ZC, Peng H, Xiao YZ (2012) A new marine bacterial laccase with chloride-enhancing alkaline-dependent activity and dye decolorization ability. Bioresour Technol 11:36–41

    Article  CAS  Google Scholar 

  • Fernandes TAR, Silveira WB, Passos FML, Zucchi TD (2014) Laccases from actinobacteria—what we have and what to expect. Post Mikrobiol 4:285–296

    CAS  Google Scholar 

  • Galai S, Limam F, Marzouki N (2009) A New Stenotrophomonas maltophilia strain producing laccase. use in decolorization of synthetics dyes. Appl Biochem Biotechnol 158:416–431

    Article  CAS  Google Scholar 

  • George N, Chauhan PS, Puri N, Gupta N (2014) Statistical optimization of process parameters for production of alkaline protease from Vibrio metschnikovii NG155 having application in leather industry. Int J Pharma Bio Sci 5(1):509–517

    Google Scholar 

  • Ghasemi Y, Yarahmadi E, Ghoshoon MB, Dabbagh F, Hajighahramani N, Ebrahimi N, Mobasher MA, Najafabdy NM (2014) Cloning, expression and purification of laccase gene from Bacillus subtilis in Escherichia coli. Minerva Biotech 26:295–300

    Google Scholar 

  • Givaudan A, Effosse A, Faure D, Potier P, Bouillant ML, Bally R (1993) Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere:evidence for laccase activity in non-motile strains of Azospirillum lipoferum. FEMS Microbiol 108:205–210

    Article  CAS  Google Scholar 

  • Gray HB, Malmstrom BG, Williams RJP (2000) Copper coordination in blue proteins. J Biol Inorg Chem 5:551–559

    Article  CAS  Google Scholar 

  • Guan ZB, Song CM, Zhang N, Zhou W, Xu CW, Zhou LX, Zhao H, Cai YJ, Liao XR (2014) Overexpression, characterization, and dye-decolorizing ability of a thermostable, pH-stable, and organic solvent-tolerant laccase from Bacillus pumilus W. J Mol Cat B 101:1–6

    Article  CAS  Google Scholar 

  • Guan ZB, Shui Y, Song CM, Zhang N, Cai YJ, Liao XR (2015) Efficient secretory production of CotA-laccase and its application in the decolorization and detoxification of industrial textile wastewater. Environ Sci Pollut Res 22:9515–9523

    Article  CAS  Google Scholar 

  • Guijarro JM, Pérez J, Dorado JM, Guillén F, Moya R, Hernández M, Arias ME (2009) Detoxification of azo dyes by a novel pH-versatile, salt-resistant laccase from Streptomyces ipomoea. Int Microbiol 12:13–21

    Google Scholar 

  • Gunne M, Höppner A, Hagedoorn PL, Urlacher VB (2014) Structural and redox properties of the small laccase Ssl1 from Streptomyces sviceus. FEBS J 281(18):4307–4318. doi:10.1111/febs.12755

    Article  CAS  Google Scholar 

  • Gupta N, Lee FS, Farinas ET (2010) Laboratory evolution of laccase for substrate specificity. J Mol Catal B 62:230–234

    Article  CAS  Google Scholar 

  • Gupta V, Garg S, Capalash N, Gupta N, Sharma P (2015) Production of thermo-alkali-stable laccase and xylanase by co-culturing of Bacillus sp. and B. halodurans for biobleaching of kraft pulp and deinking of waste paper. Bioprocess Biosyst Eng 38:947–956

    Article  CAS  Google Scholar 

  • Hakala N (2011) Decolorization of ink jet ink and deinking of ink jet printed paper with laccase mediator system. Bioresource 6:1336–1350

    Google Scholar 

  • Hakulinen N, Rouvinen J (2015) Three-dimensional structures of laccases. Cell Mol Life Sci 72:857–868

    Article  CAS  Google Scholar 

  • Ihssen J, Reiss R, Luchsinger R, Meyer LT, Richter M (2015) Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli. Sci Rep. doi:10.1038/srep1046.

  • Ihssen J, Jankowska D, Ramsauer T, Reiss R, Luchsinger R, Wiesli L, Schubert M, Thöny-MeyerL Faccio G (2017) Engineered Bacillus pumilus laccase-like multi-copper oxidase for enhanced oxidation of the lignin model compound guaiacol. Protein Eng Des Sel. doi:10.1093/protein/gzx026

    Google Scholar 

  • Kalme S, Jadhav S, Jadhav M, Govindwar S (2008) Textile dye degrading laccase from Pseudomonas desmolyticum NCIM 2112. Enzyme Microb Technol 44:65–71

    Article  CAS  Google Scholar 

  • Kalyani DC, Munk L, Mikkelsen JD, Meyer AS (2016) Molecular and biochemical characterization of a new thermostable bacterial laccase from Meiothermus ruber DSM 1279. RSC Adv 6:3910–3918

    Article  CAS  Google Scholar 

  • Kameshwar AKS, Qin W (2016) Qualitative and quantitative methods for isolation and characterization of lignin-modifying enzymes secreted by microorganisms. Bioenerg Res. doi:10.1007/s12155-016-9784-5

    Google Scholar 

  • Klis M, Rogalski J, Bilewicz R (2007) Voltammetric determination of catalytic reaction parameters of laccase based on electrooxidation of hydroquinone and ABTS. Bioelectrochemistry 71:2–7

    Article  CAS  Google Scholar 

  • Koschorreck K, Schmid RF, Urlacher VB (2009) Improving the functional expression of a Bacillus licheniformis laccase by random and site-directed mutagenesis. BMC Biotechnol 9:12

    Article  CAS  Google Scholar 

  • Li X, Lin X, Zhang J, Wu Y, Yin R, Feng Y, Wang Y (2010) Degradation of polycyclic aromatic hydrocarbons by crude extracts from spent mushroom substrate and its possible mechanisms. Curr Microbiol 60:336–342

    Article  CAS  Google Scholar 

  • Li Y, Zuo W, Li Y, Wang X (2012) Cloning of multicopper oxidase gene from Ochrobactrum sp. 531 and characterization of its alkaline laccase activity towards phenolic substrates. Adv Biol Chem 2:248–255

    Article  CAS  Google Scholar 

  • Liu H, Cheng Y, Du B, Tong C, Liang S, Han S, Zheng S, Lin Y (2015) Overexpression of a novel thermostable and chloride-tolerant laccase from Thermus thermophilus SG0.5JP17-16 in Pichia pastoris and its application in synthetic dye decolorization. PLoS ONE 10(3):e0119833

    Article  CAS  Google Scholar 

  • Liu W, Liu C, Liu L, You Y, Jiang J, Zhou Z, Dong Z (2017) Simultaneous decolorization of sulfonated azo dyes and reduction of hexavalent chromium under high salt condition by a newly isolated salt tolerant strain Bacillus circulans BWL1061. Ecotoxico Environ Saf 141:9–16

    Article  CAS  Google Scholar 

  • Lonergan G, Mew E, Schliephake K, Baker WL (1997) Phenolic substrates for folumetric detection of laccase activity. FEMS Microbiol Lett 153:485–490

    Article  CAS  Google Scholar 

  • Lu L, Zhao M, Wang NY, Zhao LY, Du MH, Li TL, Li DB (2012) Characterization and dye decolorization ability of an alkaline resistant and organic solvents tolerant laccase from Bacillus licheniformis LS04. Bioresour Technol 115:35–40

    Article  CAS  Google Scholar 

  • Lu L, Wang NT, Xu TF, Wang YJ, Wang CL, Zhao M (2013) Cloning and expression of thermo-alkali-stable laccase of Bacillus licheniformis in Pichia pastoris and its characterization. Bioresour Technol 134:81–86

    Article  CAS  Google Scholar 

  • Ma J, Zhang K, Liao H, Hector SB, Shi X, Li J, Liu B, Xu T, Tong C, Liu X, Zhu Y (2016) Genomic and secretomic insight into lignocellulolytic system of an endophytic bacterium Pantoea ananatis Sd-1. Biotechnol Biofuels 9:25

    Article  CAS  Google Scholar 

  • Machczynski MC, Vijgenboom E, Samyn B, Canters GW (2004) Characterization of SLAC: a small laccase from Streptomyces coeli color with unprecedented activity. Protein Sci 13(9):2388–2397

    Article  CAS  Google Scholar 

  • Madhavi V, Lele SS (2009) Laccase: properties and application. BioResources 4:1694–1717

    Google Scholar 

  • Margot J, Granier CB, Maillard J, Blánquez P, Barry DA, Holliger C (2013) Bacterial versus fungal laccase: potential for micropollutant degradation. J App Microbiol Biotechnol Express 3:63

    Google Scholar 

  • Mate DM, Alcalde M (2015) Laccase engineering from rational design to directed evolution. Biotechnol Adv 33:25–40

    Article  CAS  Google Scholar 

  • Mathews SL, Smithson CE, Grunden AM (2016) Purification and characterization of a recombinant laccase-like multi-copper oxidase from Paenibacillus glucanolyticus SLM1. J Appl Microbiol 121:1335–1345

    Article  CAS  Google Scholar 

  • McMahon AM, Doyle EM, Brooks S, O’Connor EK (2006) Biochemical characterisation of the coexisting tyrosinase and laccase in the soil bacterium Pseudomonas putida F6. Enzyme Microb Technol 4:1435–1441

    Google Scholar 

  • Menaka S, Lone TA, Lone RA (2015) Cloning of laccase gene from a newly isolated 2, 4-dichlorophenol degrading Bacillus subtilis from dyeing industry sites. Am Eur J Agric Environ Sci 1:1602–1608

    Google Scholar 

  • Mishra SK, Srivastava SK (2016) Production of extracellular laccase from bacterial strain Bacillus subtilis MTCC 1039 using different parameter. Biosci Biotechnol Res Asia 13:1645–1650

    Article  Google Scholar 

  • Mollania N, Khajeh K, Ranjbar B, Hosseinkhani S (2011) Enhancement of bacterial laccase thermostability through directed mutagenesis of surface loop. Enzyme Microb Technol 49:446–452

    Article  CAS  Google Scholar 

  • Mongkolthanaruk W, Tongbopit S, Bhoonobtong A (2012) Independent behavior of bacterial laccases to inducers and metal ions during production and activity. Afr J Biotechnol 11:9391–9398

    CAS  Google Scholar 

  • Mot CA, Parvu M, Damian G, Irimiea FD, Darula Z, Medzihradszkyd KF, Brem B, Silaghi-Dumitrescu R (2012) A “yellow” laccase with “blue” spectroscopic features from Sclerotinia sclerotium. Process Biochem 47:968–975

    Article  CAS  Google Scholar 

  • Muthukumarasamy NP, Jackson B, Raj JA, Sevanan M (2015) Production of extracellular laccase from Bacillus subtilis MTCC 2414 using agroresidues as a potential substrate. Biochem Res Int. doi:10.1155/2015/765190

    Google Scholar 

  • Narayanan MP, Murugan S, Eva AS, Devina SU, Kalidass S (2015) Application of immobilized laccase from Bacillus subtilis MTCC 2414 on decolourization of synthetic dyes. Res J Microbiol 10:421–432

    Article  Google Scholar 

  • Neifar M, Chouchane H, Mahjoubi M, Jaouani A, Cherif A (2016) Pseudomonas extremorientalis BU118: a new salt-tolerant laccase-secreting bacterium with biotechnological potential in textile azo dye decolourization. 3. Biotech 6:107

    Google Scholar 

  • Ng IS, Zheng X, Chen BY, Chi X, Lu Y, Chang CS (2013) Proteomics approach to decipher novel genes and enzymes characterization of a bioelectricity-generating and dye-decolorizing bsacterium Proteus hauseri ZMd44. Biotechnol Bioproc Eng 18:8–17. doi:10.1007/s12257-012-0340-7

    Article  CAS  Google Scholar 

  • Niladevi KN, Sheejadevi PS, Prema P (2008) Strategies for enhancing laccase yield from Streptomyces psammoticus and its role in mediator-based decolorization of azo dyes. Appl Biochem Biotechnol 151:9–19

    Article  CAS  Google Scholar 

  • Pardo I, Chanaga X, Vicente AI, Alcalde M, Camarero S (2013) New colorimetric screening assays for the directed evolution of fungal laccases to improve the conversion of plant biomass. BMC Biotechnol 13:90

    Article  CAS  Google Scholar 

  • Pereira L, Coelho AV, Viegas CA, dos Santos MM, Robalo MP, Martins LO (2008) Enzymatic biotransformation of the azo dye Sudan orange G with bacterial CotA-laccase. J Biotechnol 139:68–77

    Article  CAS  Google Scholar 

  • Pointing SB (1999) Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Divers 2:17–33

    Google Scholar 

  • Pozdnyakova NN, Turkovskaya OV, Yudina EN, Rodakiewicz-Nowak Y (2006) Yellow laccase from the fungus Pleurotus ostreatusD1: purification and characterization. Appl Biochem Microbiol 42:56–61

    Article  CAS  Google Scholar 

  • Prins AL, Kleinsmidt N, Khan B, Kirby T, Kudanga J, Vollmer J, Pleiss S, Burton M, Le RH (2015) The effect of mutations near the T1 copper site on the biochemical characteristics of the small laccase from Streptomyces coelicolor A3. Enzyme Microb Technol 68:23–32

    Article  CAS  Google Scholar 

  • Rajeshwari M, Bhuvaneswari V (2016) Production of the extracellular laccase from the newly isolated Bacillus sp. PK4. Afri J Biotechnol 15:1813–1826

    Article  Google Scholar 

  • Rajeswari M, Vennila K, Bhuvaneswari V (2015) Optimization of laccase production media by Bacilllus cereus TSS1 using Box-Behnken design. Int J Chem Pharma Sci 6(1):95–101

    Google Scholar 

  • Reiss R, Ihssen J, Richter M, Eichhorn E, Schilling B, Thony-Meyer L (2013) Laccase versus laccase-like multi-copper oxidase: A comparative study of similar enzymes with diverse substrate spectra. PLoS ONE. doi:10.1371/journal.pone.0065633

    Google Scholar 

  • Rescigno A, Sanjust E, Moatanam L, Sollai F, Soddu G, Rinaldi AC, Oliva S, Rinaldi A (1997) Detection of laccase, peroxidase, and polyphenol oxidase on a single polyacrylamide gel electrophoresis. Anal let 30:2211–2220

    Article  CAS  Google Scholar 

  • Rezaei S, Shahverdi AR, Faramarzi MA (2017) Isolation, one-step affinity purification, and characterization of a polyextremotolerant laccase from the halophilic bacterium Aquisalibacillus elongatus and its application in the delignification of sugar beet pulp. Bioresour Technol 230:67–75

    Article  CAS  Google Scholar 

  • Roberts SA, Weichsel A, Grass G, Thakali K, Hazzard JT, Tollin G, Rensing C, Montfort WR (2002) Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc Natl Acad Sci USA 99:2766–2771

    Article  CAS  Google Scholar 

  • Roberts SA, Wildner GF, Grass G, Weichsel A, Ambrus A, Rensing C, Montfort WR (2003) A labile regulatory copper ion lies near the T1 copper site in the multicopper oxidase CueO. J Biol Chem 278:31958–31963

    Article  CAS  Google Scholar 

  • Rosnow JJ, Anderson LN, Nair RN, Baker ES, Wright AT (2016) Profiling microbial lignocellulose degradation and utilization by emergent omics technologies. Crit Rev Biotechnol. doi:10.1080/07388551.2016.1209158

    Google Scholar 

  • Rubilar O, Diez MC, Gianfreda L (2008) Transformation of chlorinated phenolic compounds by white rot fungi. Crit Rev Environ Sci Technol 38:227–268

    Article  CAS  Google Scholar 

  • Saxena A, Chauhan PS (2016) Role of various enzymes in deinking of paper: a review. Crit Rev Biotechnol 15:1–15

    CAS  Google Scholar 

  • Sharma P, Goel R, Capalash N (2007) Bacterial laccase. World J Microbiol Biotechnol 23:823–832

    Article  CAS  Google Scholar 

  • Sheikhi F, Ardakani MR, Enayatizamir N, Couto SR (2012) The determination of assay for laccase of Bacillus subtilis WPI with two classes of chemical compounds as substrates. Indian J Microbiol 52:701–707

    Article  CAS  Google Scholar 

  • Shi X, Liu Q, Ma J, Liao H, Xiong X, Zhang K, Wang T, Liu X, Xu T, Yuan S, Zhang X, Zhu Y (2015a) An acid-stable bacterial laccase identified from the endophyte Pantoea ananatis Sd-1 genome exhibiting lignin degradation and dye decolorization abilities. Biotechnol Lett 37:2279–2288

    Article  CAS  Google Scholar 

  • Shi X, Liu Q, Ma J, Liao H, Xiong X, Zhang K, Wang T, Liu X, Ting X, Yuan S, Zhang X, Zhu Yonghua (2015b) An acid-stable bacterial laccase identified from the endophyte Pantoea ananatis Sd-1 genome exhibiting lignin degradation and dye decolorization abilities. Biotechnol Lett 37:2279–2288

    Article  CAS  Google Scholar 

  • Silva CS, Durao P, Fillat A, Lindley PF, Martins L, Bento I (2012) Crystal structure of the multicopper oxidase from the pathogenic bacterium Campylobacter jejuni CGUG11284: characterization of a metallo-oxidase. Metallomics 4:37–47

    Article  CAS  Google Scholar 

  • Singh G, Bhalla A, Capalash N, Sharma P (2007) Response surface methodology for the optimized production of an alkalophilic laccase from γ-proteobacterium JB. BioResource 4:544–553

    Google Scholar 

  • Singh G, Ahuja N, Batish M, Capalash N, Sharma P (2008) Biobleaching of wheat straw-rich soda pulp with alkalophilic laccase from gamma-proteobacterium JB: optimization of process parameters using response surface methodology. Bioresour Technol 99:7472–7479

    Article  CAS  Google Scholar 

  • Singh G, Bhalla A, Capalash N, Sharma P (2010) Characterization of immobilized laccase from γ-proteobacterium JB: approach towards the development of biosensor for the detection of phenolic compounds. Indian J Sci Technol 3:48–53

    CAS  Google Scholar 

  • Singh G, Bhalla A, Kaur P, Capalash N, Sharma P (2011) Laccase from prokaryotes: a new source for an old enzyme. Rev Environ Sci Bio 10(4):309–326

    Article  Google Scholar 

  • Singh D, Sharma KK, Jacob S, Gakhar SK (2014) Molecular docking of laccase protein from Bacillus Safensis DSKK5 isolated from earthworm gut: a novel method to study dye decolorization potential. Water Air Soil Pollut 225:2175

    Article  CAS  Google Scholar 

  • Siroosi M, Amoozegar MA, Khajeh K (2016) Purification and characterization of an alkaline chloride-tolerant laccase from a halotolerant bacterium, Bacillus sp. strain WT. J Mol Catal B Enzym 134:89–97

    Article  CAS  Google Scholar 

  • Solano F, Garcia E, Perez D, Sanchez-Amat A (1997) Isolation and characterization of strain MMB-1 (CECT 4803), a novel melanogenic marine bacterium. Appl Environ Microbiol 63:3499–3506

    CAS  Google Scholar 

  • Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2605

    Article  CAS  Google Scholar 

  • Solomon EI, Augustine AJ, Yoon J (2008) O2 reduction to H2O by the multicopper oxidases. Dalton Trans 30:3921–3932

    Article  CAS  Google Scholar 

  • Sondhi S, Sharma P, Saini S, Puri N, Gupta N (2014) Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4. PLoS ONE 9(5):e96951

    Article  CAS  Google Scholar 

  • Sondhi S, Sharma P, George N, Chauhan PS, Puri N, Gupta N (2015) An extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4, with a potential to biobleach softwood pulp. 3. Biotech 5:175–185

    Google Scholar 

  • Sun J, Zheng M, Lu Z, Lu F, Zhang C (2017) Heterologous production of a temperature and pH-stable laccase from Bacillus vallismortis fmb-103 in Escherichia coli and its application. Process Biochem 55:77–84

    Article  CAS  Google Scholar 

  • Valls C, Roncero MB (2009) Using both xylanase and laccase enzymes for pulp bleaching. Bioresour Technol 100:2032–2039

    Article  CAS  Google Scholar 

  • Verma A, Shirkot P (2014) Purification and characterization of thermostable laccase from thermophilic Geobacillus thermocatenulatus MS5 and its applications in removal of textile dyes Sch Acad. J Biosci 2:479–485

    Google Scholar 

  • Virk AP, Puri M, Gupta V, Capalash N, Sharma P (2013) Combined enzymatic and physical deinking methodology for efficient eco-friendly recycling of old newsprint. PLoS ONE 8:e72346

    Article  CAS  Google Scholar 

  • Wang TN, Zhao M (2016) A simple strategy for extracellular production of CotA laccase in Escherichia coli and decolorization of simulated textile effluent by recombinant laccase. Appl Microbiol Biotechnol. doi:10.1007/s00253-016-7897-6

    Google Scholar 

  • Wang C, Zhao M, Lu L, Wei Z, Li T (2011) Characterization of spore laccase from Bacillus subtilis WD23 and its use in dye decolorization. Afr J Biotechnol 10:2186–2192

    CAS  Google Scholar 

  • Wang L, Nie Y, Tang YQ, Song XM, Cao K, Sun LZ, Wang ZJ, Wu XL (2016) Diverse bacteria with lignin degrading potentials isolated from two ranks of coal. Front Microbiol. doi:10.3389/fmicb.2016.01428

    Google Scholar 

  • Wu J, Kim KS, Lee JH, Lee YC (2010) Cloning, expression in Escherichia coli, and enzymatic properties of laccase from Aeromonas hydrophila WL-11. J Environ Sci 22:635–640

    Article  CAS  Google Scholar 

  • Xia Y, Feng J, Li H (2016) Optimizing fermentation conditions for the expression of laccase gene lac1338 by response surface methodology. Chin J Appl Environ Biol 22(2):219–223

    CAS  Google Scholar 

  • Xu Q, Fu Y, Qin M, Qiu H (2007) Surface properties of old news print laccase–violuric acid system deinked pulp. Appita J 60:372–377

    CAS  Google Scholar 

  • Xu Q, Fu Y, Gao Y, Qin M (2009) Performance and efficiency of old newspaper deinking by combining cellulase/hemicellulase with laccase–violuric acid system. Waste Manage 29:1486–1490

    Article  CAS  Google Scholar 

  • Zeng J, Lin X, Zhang J, Li X, Wong MH (2011) Oxidation of polycyclic aromatic hydrocarbons by the bacterial laccase CueO from E. coli. Appl Microbiol Biotechnol 89:1841–1849

    Article  CAS  Google Scholar 

  • Zhang C, Diao H, Lu F, Bie X, Wang Y, Lu Z (2012) Degradation of triphenylmethane dyes using a temperature and pH stable spore laccase from a novel strain of Bacillus vallismortis. Bioresour Technol 126:80–86

    Article  CAS  Google Scholar 

  • Zuroff T, Curtis W (2012) Developing symbiotic consortia for lignocellulosic biofuel production. Appl Microbiol Biotechnol 93:1423–1435

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is not supported by any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakram Singh Chauhan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights and informed consent

Research involving human participants and/or animals/informed consent: not applicable for this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 339 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, P.S., Goradia, B. & Saxena, A. Bacterial laccase: recent update on production, properties and industrial applications. 3 Biotech 7, 323 (2017). https://doi.org/10.1007/s13205-017-0955-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0955-7

Keywords