Skip to main content
Log in

Isolation and characterization of Bacillus thuringiensis strains native to Assam soil of North East India

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

We have identified both crystalliferous and acrystalliferous Bt isolates from the Assam soil of North East India for the first time. A total of 301 Bacillus type colonies were selected based on their appearance and colony morphology. Out of these colonies, 42 isolates had characteristics similar to Bt isolates on MYP (Mannitol Egg Yolk Polymyxin) agar base medium. The ERIC-PCR and 16S rDNA analyses confirmed that 42 isolates are Bacillus thuringiensis. Phase contrast microscopy showed that 37 isolates produced crystal endospore during the sporulation phase and 5 acrystalliferous isolates were also found. Amplification of cry gene was carried out using general Cry primers along with one cry2 gene specific primer. Out of 42 isolates, 50% of the isolates showed presence of cry2 gene followed by cry9 (40.47) and cry1 (40.47). Moreover, 21.42% of isolates showed the presence of more than one cry genes. We also screened these isolates for the possibility of having new Bt genes using universal primer and found two strains having a new type of Cry1I gene with 82 and 85% similarities with the available Cry1I gene sequences. Thus, these new types of Bt gene could be useful for Bt-based bioformulations and generation of transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alper M, Güneş H, Col B, Tunca H (2016) Bioactivities of cry gene positive Bacillus thuringiensis (Berliner) (Bacillales: Bacillaceae) strains on Ephestia kuehniella Zeller, 1879 and Plodia interpunctella (Hübner 1813) (Lepidoptera: Pyralidae). Türk Entomol Derg. 40:365–375

    Article  Google Scholar 

  • Andrup L, Barfod KK, Jensen GB, Smidt L (2008) Detection of large plasmids from the Bacillus cereus group. Plasmid 59(2):139–143

    Article  CAS  Google Scholar 

  • Apaydin O, Yenidunya AF, Harsa S, Gunes H (2005) Isolation and characterization of Bacillus thuringiensis strains from different grain habitats in Turkey. World J Microbiol Biotechnol 21:285–292

    Article  CAS  Google Scholar 

  • Beard CE, Ranasinghe C, Akhurst RJ (2001) Screening for novel cry genes by hybridization. Lett Appl Microbiol 33:241–245

    Article  CAS  Google Scholar 

  • Bravo A, Sarabia S, Lopez L, Ontiveros H, Abarca C, Ortíz A, Ortíz M, Lina L, Villalobos FJ, Peña G, Nuñez-Valdez ME, Soberón M, Quintero R (1998) Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl Environ Microbiol 64:4965–4972

    CAS  Google Scholar 

  • Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    Article  CAS  Google Scholar 

  • Bravo A, Gómez I, Porta H, García-Gómez BI, Rodriguez-Almazan C, Pardo L, Soberón M (2013) Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microb Biotechnol 6:17–26

    Article  Google Scholar 

  • Cerón J, Ortíz A, Quintero R, Güereca L, Bravo A (1995) Specific PCR primers directed to identify cryI and cryIII genes within a Bacillus thuringiensis strain collection. Appl Environ Microbiol 61:3826–3831

    Google Scholar 

  • Crickmore N, Ellar DJ (1992) Involvement of a possible chaperonin in the efficient expression of a cloned CryllA δ-endotoxin gene in Bacillus thuringiensis. Mol Microbiol 6:1533–1537

    Article  CAS  Google Scholar 

  • Crickmore N, Zeigler D, Feitelson J, Schnepf E, Van-Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol 62:807–813

    CAS  Google Scholar 

  • Dai JY, Wang B, Luo XX, Yu L, Zhang XM, Yu ZN (1994) Studies on 410 strains of Bacillus thuringiensis isolated from soil. J Huanzhong Agric Univ 2:144–152

    Google Scholar 

  • Espinasse S, Gohar M, Chaufaux J, Buisson C, Perchat S, Sanchis V (2002) Correspondence of high levels of beta-exotoxin I and the presence of Cry1B in Bacillus thuringiensis. Appl Environ Microbiol 68(9):4182–4186

    Article  CAS  Google Scholar 

  • Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziel MG (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci 93:5389–5394

    Article  CAS  Google Scholar 

  • Feitelson JS (1993) The Bacillus thuringiensis family tree. In: Kim L (ed) Advanced engineered pesticides. Marcel Dekker, Inc., New York, pp 63–71

    Google Scholar 

  • Guo S, Liu M, Peng D, Ji S, Wang P, Yu Z, Sun M (2008) New strategy for isolating novel nematicidal crystal protein genes from Bacillus thuringiensis strain YBT-1518. Appl Environ Microbiol 74:6997–7001. doi:10.1128/AEM.01346-08

    Article  CAS  Google Scholar 

  • Izabela S, Dennis KB, Brian AF (2008) Novel isolate of Bacillus thuringiensis subsp. thuringiensis that produces a quasi-cuboidal crystal of Cry1Ab21 toxic to larvae of Trichoplusiani. Appl Environ Microbiol 74(4):923–930

    Article  Google Scholar 

  • Kumar PA, Malik VS, Sharma RP (1996) Insecticidal proteins of Bacillus thuringiensis. Adv Appl Microbiol 42:1–43

    Article  CAS  Google Scholar 

  • Letowski J, Bravo A, Brousseau R, Masson L (2005) Assessment of cry1 gene contents of B. thuringiensis strains by use of DNA microassays. Appl Environ Microbiol 71(9):5391–5398

    Article  CAS  Google Scholar 

  • Li H, Liu D, Gao J (2011) Differentiation between Bacillus thuringiensis and Bacillus cereus by 16S rDNA-PCR and ERIC-PCR. J Northeast Agric Univ 18(3):12–15

    CAS  Google Scholar 

  • Lima ASG, Guidelli AM, Abreu IL, Lemos MVF (2002) Identification of new isolates of Bacillus thuringiensis using rep-PCR products and -endotoxin electron microscopy. Genet Mol Biol 25:225–229

    Article  CAS  Google Scholar 

  • Lupski JR, Weinstock GM (1992) Short, interspersed repetitive DNA sequences in prokaryotic genomes. J Bacteriol 174:4525–4529

    Article  CAS  Google Scholar 

  • Mossel DAA, Koopman MJ, Jongerius E (1967) Enumeration of Bacillus cereus in foods. Appl Microbiol 15:650–653

    CAS  Google Scholar 

  • Noguera PA, Ibarra JE (2010) Detection of new cry genes of Bacillus thuringiensis by use of a novel PCR primer system. Appl Environ Microbiol 76(18):6150–6155

    Article  CAS  Google Scholar 

  • Patel KD, Chudasama CJ, Ingle SS (2013) Distribution and diversity analysis of Bacillus thuringiensis cry genes in different soil types and geographical regions of India. J Invertebr Pathol 112(2):116–121

    Article  CAS  Google Scholar 

  • Pedro AN, Ibarra JE (2010) Detection of new cry genes of Bacillus thuringiensis by use of a novel PCR primer system. Appl Environ Microbiol 76:6150–6155. doi:10.1128/AEM.00797-10

    Article  Google Scholar 

  • Porcar M, Juarez-Perez V (2003) PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiol Rev 26:419–432

    Article  CAS  Google Scholar 

  • Rebecca LH, Zothansanga Singh BP, Gurusubramanian G, Senthil NK (2011) DNA finger printing of Bacillus thuringiensis based on repetitive DNA sequences using ERIC-PCR. Sci Vis 11(3):147–154

    Google Scholar 

  • Roh JY, Choi JY, Li MS, Jin BR, Je YH (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol 17(4):547–559

    CAS  Google Scholar 

  • Sasaki J, Asano S, Hashimoto N, Lay BW, Hastowo S, Bando H, Iizuka T (1997) Characterization of a cry2A gene cloned from an isolate of Bacillus thuringiensis serovar sotto. Curr Microbiol 35:1–8

    Article  Google Scholar 

  • Sauka DH, Cozzi JG, Benintende GB (2005) Screening of cry2 genes in Bacillus thuringiensis isolates from Argentina. Antonie Van Leeuwenhoek 88:163–165

    Article  CAS  Google Scholar 

  • Schnepf E, Crickmore N, Rie VJ, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    CAS  Google Scholar 

  • Shangkuan YH, Chang YH, Yang JF, Lin HC, Shaio MF (2001) Molecular characterization of Bacillus anthracis using multiplex PCR, ERIC-PCR and RAPD. Lett Appl Microbiol 23:139–145

    Article  Google Scholar 

  • Tabashnik BE (2015) ABCs of insect resistance to Bt. PLoS Genet 11(11):e1005646. doi:10.1371/journal.pgen.1005646

    Article  Google Scholar 

  • Tobes R, Ramos JL (2005) REP code: defining bacterial identity in extragenic space. Environ Microbiol 7:225–228

    Article  CAS  Google Scholar 

  • Travers RS, Martin PA, Reinchlderfer CF (1987) Selective process for efficiency isolates of soil Bacillus spp. Appl Environ Microbiol 53:1263–1266

    CAS  Google Scholar 

  • Tyrell DJ, Bulla LA, Andrews RE, Kramer KS, Davidson LI, Nardin P (1981) Comparative biochemistry of entomocidal parasporal crystals of selected strains of Bacillus thuringiensis. J Bacteriol 145:1052–1062

    CAS  Google Scholar 

  • Widner WR, Whiteley HR (1989) Two highly related insecticidal crystal proteins of Bacillus thuringiensis subsp. Kurstaki possess different host range specificities. J Bacteriol 171:965–974

    Article  CAS  Google Scholar 

  • Yamamoto T (2001) One hundred years of Bacillus thuringiensis research and development: discovery to transgenic crops. J Insect Biotechnol Sericol 70:1–23

    CAS  Google Scholar 

  • Zhu J, Tan FR, Tang J, Li YY, Zheng AP, Li P (2009) Characterization of insecticidal crystal protein cry gene of Bacillus thuringiensis from soil of Sichuan Basin, China and cloning of novel haplotypes cry gene. Ann Microbiol 59(1):1–8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to DBT-AAU Centre for providing the necessary facility to pursue this work. MR acknowledges the Department of Biotechnology, Assam Agricultural University, Jorhat for support to work on this topic. We would also like to thank NFBSFARA, ICAR, National fund for support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sumita Acharjee or Bidyut Kumar Sarmah.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabha, M., Sharma, S., Acharjee, S. et al. Isolation and characterization of Bacillus thuringiensis strains native to Assam soil of North East India. 3 Biotech 7, 303 (2017). https://doi.org/10.1007/s13205-017-0935-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0935-y

Keywords

Navigation