Abstract
Tomato is the world’s second most cultivated vegetable. During cultivation or post-harvest storage, it is susceptible to more than 200 diseases caused by an array of pathogenic fungi, nematodes, bacteria, and viruses. Although wide range of chemical pesticides are currently available to manage plant diseases, continuous application of pesticides not only affect the nutritional contents of tomato but also the texture or productivity of soil. In this context, plant growth promoting bacteria (PGPB) are one of the nature friendly, safe, and effective alternatives for the management of diseases and pathogens of tomato. Currently, numbers of microbes have been used as soil or plant inoculants in different plants including tomato as biocontrol. Besides disease inhibition, these inoculants also act as growth modulators. The present article describes the biocontrol potential of PGPB strains and mechanisms for the diseases management in tomato.
Similar content being viewed by others
References
Abbasi PA, Weselowski B (2015) Efficacy of Bacillus subtilis QST 713 formulations, copper hydroxide, and their tank mixes on bacterial spot of tomato. Crop Prot 74:70–76
Abdallah RA, Mokni-Tlili S, Nefzi A, Jabnoun-Khiareddine H, Daami-Remadi M (2016) Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biol Control 97:80–88
Aksoy H, Kaya Y, Ozturk M, Secgin Z, Onder H, Okumus A (2017) Pseudomonas putida Induced response in phenolic profile of tomato seedlings (Solanum lycopersicum L.) infected by Clavibacter michiganensis subsp. michiganensis. Biol Control 105:6–12
Almaghrabi OA, Massoud Samia I, Abdelmoneim Tamer S (2013) Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J Biol Sci 20:57–61
Ashraf MS, Khan TA (2010) Integrated approach for the management of Meloidogyne javanica on eggplant using oil cakes and biocontrol agents. Arch Phytopathol Plant Prot 43:609–614
Babu AN, Jogaiah S, Ito S, Nagaraj AK, Tran LP (2015) Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Sci 231:62–73
Benhamou N, Kloepper JW, Tuzun S (1998) Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultra structure and cytochemistry of the host response. Planta 204:153–168
Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13
Budi SW, Van TD, Arnould C, Dumas-Gaudot E, Gianinazzi-Pearson V, Gianinazzi S (2000) Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil borne pathogenic bacteria. Appl Soil Ecol 15:191–199
Burkhead KD, Schisler DA, Slininger PJ (1994) Pyrrolnitrin production by biological-control agent Pseudomonas cepacia B37w in culture and in colonized wounds of potatoes. Appl Environ Microbiol 60:2031–2039
Cabanas CGL, Schilirò E, Corredor AV, Blanco JM (2014) The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots. Front Microbiol 5:427
Chalupowicz L, Barash I, Reuven M, Dror O, Sharabani G, Gartemann KH, Eichenlaub R, Sessa G, Manulis-Sasson S (2016) Differential contribution of Clavibacter michiganensis virulence factors to systemic and local infection in tomato. Mol Plant Pathol. doi:10.1111/mpp.12400
Chin-A-Woeng TFC, Bloemberg GV, Van der Bij AJ, Van der Drift KMGM, Schripsema J, Kroon B, Scheffer RJ, Keel C, Bakker PAHM, De Bruijn FJ, Thomas-Oates JE, Lugtenberg BJJ (1998) Biocontrol by phenazine-1-carboxamide producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporumf. sp. radicis lycopersici. Mol Plant Microbe Interact 10:79–86
Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47:289–297
Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959
De Curtis F, Lima G, Vitullo D, De Cicco V (2010) Biocontrol of Rhizoctonia solani and Sclerotium rolfsii on tomato by delivering antagonistic bacteria through a drip irrigation system. Crop Prot 29(7):663–670
Duffy BK, Defago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438
Dun-chun HE, Zhan J, Xie L (2016) Problems, challenges and future of plant disease management: from an ecological point of view. J Integ Agri 15(4):705–715
Elad Y, Zimand G, Zaqs Y, Zuriel S (1993) Use of Trichoderma harzianum in combination or alternation with fungicides to control cucumber grey mould (Botrytis cinerea) under commercial greenhouse conditions. Plant Pathol 42:324–332
Flores-Fargas RD, O’Hara GW (2006) Isolation and characterization of rhizosphere bacteria with potential for biological control of weeds in vine yards. J Appl Microbiol 100:946–954
Foolad MR, Merk HL, Ashrafi H (2008) Genetics, genomics and breeding of late blight and early blight resistance in tomato. Crit Rev Plant Sci 27:75–107
Fravel DR (1988) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol 26:75–91
Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. doi:10.6064/2012/963401
Gopalakrishnan S, Pande S, Sharma M, Humayun P, Keerthi Kiran BK, Sandeep D et al (2011) Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Prot 30:1070–1078
Goudjal Y, Toumatiaa O, Yekkoura A, Sabaoua N, Mathieuc F, Zitounia A (2014) Biocontrol of Rhizoctonia solani damping-off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara. Microbiol Res 169:59–65
Gowtham HG, Hariprasad P, Nayak SC, Niranjana SR (2016) Application of rhizobacteria antagonistic to Fusarium oxysporum f. sp. lycopersici for the management of Fusarium wilt in tomato. Rhizosphere 2:72–74
Gravel V, Martinez C, Antoun H, Tweddell RJ (2005) Antagonist microorganisms with the ability to control Pythium damping-off of tomato seeds in rockwool. Bio Control 50(5):771–786
Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3(4):307–319
Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008) Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing actinomycetes in a P-deficient soil under greenhouse conditions. Appl Soil Ecol 40:510–517
Hammami I, Hsouna AB, Hamdi N, Gdoura R, Triki MA (2013) Isolation and characterization of rhizosphere bacteria for the biocontrol of the damping-off disease of tomatoes in Tunisia. C R Biol 336(11–12):557–564
Handelsman J, Stab EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8:1855–1869
Hang NTT, Oh SO, Kim GH, Hur JS, Koh YJ (2005) Bacillus subtilis S1-0210 as a biocontrol agent against Botrytis cinerea in strawberries. Plant Pathol J 21:59–63
Helbig J (2001) Biological control of Botrytis cinerea Pers. Ex Fr. in strawberry by Paenibacillus polymyxa (isolate 18191). J Phytopathol 149:265–273
Huang X, Zhang N, Yong X, Yang X, Shen Q (2011) Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43. Microbiol Res 167:135–143
Huang J, Wei Z, Tan S, Mei X, Yin S, Shen Q, Xu Y (2013) The rhizosphere soil of diseased tomato plants as a source for novel microorganisms to control bacterial wilt. Appl Soil Ecol 72:79–84
Hunt DJ, Handoo ZA (2009) Taxonomy, identification and principal species. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CABI, Wallingford, pp 55–97
Jasim B, Joseph AA, John CJ, Mathew J, Radhakrishnan EK (2013) Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech. doi:10.1007/S13205-013-0143-3
Kalbe C, Marten P, Berg G (1996) Strains of the genus Serratia as beneficial rhizobacteria of oilseed rape with antifungal properties. Microbiol Res 151:433–439
Kallo G (1991) Genetic improvement of tomato. Springer, Berlin
Kesavan V, Chaudhary B (1977) Screening for resistance to Fusarium wilt of tomato. SABRO J 9:51–65
Khan N, Mishra A, Nautiyal CS (2012) Paenibacillus lentimorbus B-30488r controls early blight disease in tomato by inducing host resistance associated gene expression and inhibiting Alternaria solani. Biol Cont 62:65–74
Kilani-Feki O, Khedher SB, Dammak M, Kamoun A, Jabnoun-Khiareddine H, Daami-Remadi M, Tounsi S (2016) Improvement of antifungal metabolites production by Bacillus subtilis V26 for biocontrol of tomato postharvest disease. Biol Control 95:73–82
Kloepper JW (1993) Plant growth-promoting rhizobacteria as biological control agents. In: Metting B (ed) Soil microbial technologies. Marcel Dekker, New York, pp 255–274
Kobayashi DY, Reedy RM, Bick JA, Oudemans PV (2002) Characterization of chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Appl Environ Microbiol 68:1047–1054
Konappa NM, Maria M, Uzma F, Krishnamurthy S, Nayaka SC, Niranjana SR, Chowdappa S (2016) Lactic acid bacteria mediated induction of defense enzymes to enhance the resistance in tomato against Ralstonia solanacearum causing bacterial wilt. Sci Hortic 207:183–192
Kriaa M, Hammami I, Sahnoun M, Azebou MC, Triki MA, Kammoun R (2015) Biocontrol of tomato plant diseases caused by Fusarium solani using a new isolated Aspergillus tubingensis CTM 507 glucose oxidase. C R Biol 338(10):666–677
Kumar A, Singh R, Giri DD, Singh PK, Pandey KD (2014) Effect of Azotobacter chroococcum CL13 inoculation on growth and curcumin content of turmeric (Curcuma longa L.). Int J Curr Microbiol App Sci 3(9):275–283
Kumar A, Vandana RS, Singh M, Pandey KD (2015a) Plant growth promoting rhizobacteria (PGPR). A promising approach for disease management. In: Singh JS, Singh DP (eds) Microbes and environmental management. Studium Press, New Delhi, pp 195–209
Kumar A, Vandana Yadav A, Giri DD, Singh PK, Pandey KD (2015b) Rhizosphere and their role in plant–microbe interaction. In: Chaudhary KK, Dhar DW (eds) Microbes in soil and their agricultural prospects. Nova Science Publisher, Inc, Hauppauge, pp 83–97
Kumar V, Kumar A, Pandey KD, Roy BK (2015c) Isolation and characterization of bacterial endophytes from the roots of Cassia tora L. Ann Microbiol 65:1391–1399
Kumar A, Singh R, Yadav A, Giri DD, Singh PK, Pandey KD (2016a) Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech 6:60
Kumar A, Vandana Singh M, Singh PP, Singh SK, Singh PK, Pandey KD (2016b) Isolation of plant growth promoting rhizobacteria and their impact on growth and curcumin content in Curcuma longa L. Biocatal Agric Biotechnol 8:1–7
Labuschagne N, Pretorius T, Idris AM (2010) Plant growth-promoting rhizobacteria as biocontrol agents against soil-borne plant diseases. Microbiol Monogr 18:211–230
Larkin RP, Fravel DR (1998) Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Dis 82:1022–1028
Laurence MH, Summerell BA, Burgess LW, Liew ECY (2014) Genealogical concordance phylogenetic species recognition in the Fusarium oxysporum species complex. Fungal Biol 118:374–384
Li QL, Ning P, Zheng L, Huang JB, Li GQ, Hsiang T (2011) Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit. Biol Control 61:113–120
Ligon JM, Hill DS, Hammer PE, Torkewitz NR, Hofmann D, Kempf HJ, van Pee KH (2000) Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag Sci 56:688–695
Lima G, Ippolito A, Nigro F, Salerno M (1997) Effectiveness of Aureobasidium pullulans and Candida oleophila against post-harvest strawberry rots. Postharvest Biol Technol 10:169–178
Loganathan P, Vigneswaran S, Kandasamy J, Bolan NS (2014) Removal and recovery of phosphate from water using sorption. Crit Rev Environ Sci Technol 44(8):847–907
Lucy M, Reed E, Glick BR (2004) Application of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25
Ma X, Wang X, Cheng J, Nie X, Yu X, Zhao Y, Wang W (2015) Microencapsulation of Bacillus subtilis B99-2 and its biocontrol efficiency against Rhizoctonia solani in tomato. Biol Control 90:34–41
Mari M, Guizzardi M, Brunelli M, Folchi A (1996) Post-harvest biological control of grey mould (Botrytis cinerea Pers.: Fr.) on fresh-market tomatoes with Bacillus amyloliquefaciens. Crop Prot 15:699–705
Martínez-Hidalgo P, García JM, Pozo MJ (2015) Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules. Front Microbiol 6:922
McGovern RJ (2015) Management of tomato diseases caused by Fusarium oxysporum. Crop Prot. doi:10.1016/j.cropro.2015.02.021
Mehari ZH, Elad Y, Rav-David D, Graber ER, Harel YM (2015) Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling. Plant Soil 395(1–2):31
Nawangsih AA, Damayanti I, Wiyono S, Kartika JG (2011) Selection and characterization of endophytic bacteria as biocontrol agents of tomato bacterial wilt disease. Hayati J Biosci 18:66–70
Nelson MN, Sorenson J (1999) Chitinolytic activity of Pseudomonas fluorescens isolates from barley and sugar beet rhizosphere. FEMS Microbiol Ecol 30:217–227
Nowicki M, Foolad MR, Nowakowska M, Kozik EU (2012) Potato and tomato late blight caused by Phytophthora infestans: an overview of pathology and resistance breeding. Plant Dis 96:4–17
Nowicki M, Kozik EU, Foolad MR (2013) Late blight of tomato. Translational genomics for crop breeding, volume I: biotic stress. 1st edn. Varshney RK, Tuberosa R (eds) Wiley, Hoboken
Oku S, Komastu A, Tajima T, Nakashimada Y, Kato J (2012) Identification of chemotaxis sensory proteins for aminoacids in Pseudomonas fluorescens Pf0-1 and their involvement in chemo taxis to tomato root exudates and root colonization. Microbes Environ 27:462–469
Omar I, O’neill TM, Rossall S (2006) Biological control of Fusarium crown and root rot of tomato with antagonistic bacteria and integrated control when combined with the fungicide carbendazim. Plant Pathol 55(1):92–99
Panthee DR, Chen F (2010) Genomics of fungal disease resistance in tomato. Curr Genom 11:30–39
Pastor N, Carlier E, Andrés J, Rosas SB, Rovera M (2012) Characterization of rhizosphere bacteria for control of phytopathogenic fungi of tomato. J Environ Manag 95:S332–S337
Pérez-Montano F, Alias-Villegas C, Bellogin RA, del Cerro P, Espuny MR, Jimenez-Guerrero I, Lopez-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336
Punja ZK, Rodriguez G, Tirajoh A (2016) Effects of Bacillus subtilis strain QST 713 and storage temperatures on post-harvest disease development on greenhouse tomatoes. Crop Prot 84:98–104
Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agent. Anton van Leeuwenhoek 81:537–547
Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Innduction of systemic resistance by plant growth promoting rhizobacteria in crop against pest and diseases. Crop Prot 20:1–11
Ramyabharathi SA, Meena B, Raguchander T (2012) Induction of chitinase and b-1,3- glucanase PR proteins in tomato through liquid formulated Bacillus subtilis EPCO 16 against Fusarium wilt. J Today’s Biol Sci Res Rev JTBSRR 1(1):50–60
Reddy SA, Bagyaraj DJ, Kale RD (2012) Management of tomato bacterial spot caused by Xanthomonas campestris using vermin compost. J Biopest 5(1):10–13
Romero FM, Marina M, Pieckenstain FL (2016) Novel components of leaf bacterial communities of field-grown tomato plants and their potential for plant growth promotion and biocontrol of tomato diseases. Res Microbiol 167(3):222–233
Rossello MA, Descals E, Cabrer B (1993) Nia epidermoidea, a new marine gasteromycete. Mycol res 97(1):68–70
Shahidi Bonjar GH, Barkhordar B, Pakgohar N, Aghighi S, Biglary S, Rashid Farrokhi P et al (2006) Biological control of Phytophthora drechsleri Tucker, the causal agent of pistachio gummosis, under greenhouse conditions by use of actinomycetes. Plant Pathol J 5:20–23
Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358
Sharma RC, Sharma JN (2005) Challenging problems in horticulture and Forest pathology. Indus publishing Company, New Delhi
Siddiqui IA, Shaukat SS (2003) Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2,4-diacetylpholoroglucinol. Soil Biol Biochem 35:1615–1623
Siddiqui A, Haas D, Heeb S (2005) Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root knot nematode Meloydogyne incognita. Appl Environ Microbiol 71:5646–5649
Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250
Someya N, Kataoka N, Komagata T, Hirayae K, Hibi T, Akutsu K (2000) Biological control of cyclamen soil borne diseases by Serratia marcescens strain B2. Plant Dis 84:334–340
Srinivasan K, Gilardi G, Garibaldi A, Gullino ML (2009) Bacterial antagonists from used rockwool soilless substrates suppress fusarium wilt of tomato. J Plant Pathol 91(1):147–154
Sundaramoorthy S, Balabaskar P (2013) Biocontrol efficacy of Trichoderma spp. against wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. J App Biol Biotechnol 1(03):36–40
Tan H, Zhou S, Deng Z, He M, Cao L (2011) Ribosomal-sequence-directed selection for endophytic streptomycete strains antagonistic to Ralstonia solanacearum to control tomato bacterial wilt. Biol Control 59:245–254
Thomashow LS, Weller DM (1995) Current concepts in the use of introduced bacteria for biological disease control. In: Stacey G, Keen N (eds) Plant–microbe interactions. Chapman and Hall, New York, pp 187–235
Van der Ent S, Verhagen BW, Van Doorn R, Bakker D, Verlaan MG, Pel MJ, Joosten RG, Proveniers MC, Van Loon LC, Ton J, Pieterse CM (2008) MYB72 is required in early signaling steps of rhizobacteriainduced systemic resistance in Arabidopsis. Plant Physiol 146(3):1293–1304
Van der Ent S, Van Wees SCM, Pieterse CMJ (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochem 70:1581–1588
Van Loon LC, Bakker PA, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Ann Rev Phytopathol 36:453–483
Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254
Walker JC (1971) Fusarium wilt of tomato. Monogr. 6. APS Press, St. Paul
Walsh UF, Morrissey JP, O’Gara F (2001) Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotech 12:289–295
Wei Z, Huang J, Tan S, Mei X, Shen Q, Xu Y (2013) The congeneric strain Ralstonia pickettii QL-A6 of Ralstonia solanacearum as an effective biocontrol agent for bacterial wilt of tomato. Biol Control 65(2):278–285
Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52(487):511
Wu CH, Bernard SM, Andersen GL, Chen W (2009) Developing microbe–plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microb Biotechnol 2:428–440
Yang Z, Yuan L, Duan Y (2011) The investigation and prevention of tomato root knot nematode in Yunnan Yuanmou. Plant Prot Technol 44–45
You J, Zhang J, Wu M, Yang L, Chen W, Li G (2016) Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato. Biol Control 101:31–38
Zhou L, Yuen G, Wang Y, Wei L, Ji G (2016) Evaluation of bacterial biological control agents for control of root-knot nematode disease on tomato. Crop Prot 84:8–13
Acknowledgements
Authors are thankful to University Grants Commission and CSIR, New Delhi for granting fellowship in the form of JRF and SRF and also Head, Centre of Advanced Study in Botany, Banaras Hindu University for providing the laboratory facilities.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
None of authors have conflict of interest.
Rights and permissions
About this article
Cite this article
Singh, V.K., Singh, A.K. & Kumar, A. Disease management of tomato through PGPB: current trends and future perspective. 3 Biotech 7, 255 (2017). https://doi.org/10.1007/s13205-017-0896-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s13205-017-0896-1