Skip to main content

Advertisement

Log in

Disease management of tomato through PGPB: current trends and future perspective

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Tomato is the world’s second most cultivated vegetable. During cultivation or post-harvest storage, it is susceptible to more than 200 diseases caused by an array of pathogenic fungi, nematodes, bacteria, and viruses. Although wide range of chemical pesticides are currently available to manage plant diseases, continuous application of pesticides not only affect the nutritional contents of tomato but also the texture or productivity of soil. In this context, plant growth promoting bacteria (PGPB) are one of the nature friendly, safe, and effective alternatives for the management of diseases and pathogens of tomato. Currently, numbers of microbes have been used as soil or plant inoculants in different plants including tomato as biocontrol. Besides disease inhibition, these inoculants also act as growth modulators. The present article describes the biocontrol potential of PGPB strains and mechanisms for the diseases management in tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbasi PA, Weselowski B (2015) Efficacy of Bacillus subtilis QST 713 formulations, copper hydroxide, and their tank mixes on bacterial spot of tomato. Crop Prot 74:70–76

    Article  CAS  Google Scholar 

  • Abdallah RA, Mokni-Tlili S, Nefzi A, Jabnoun-Khiareddine H, Daami-Remadi M (2016) Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biol Control 97:80–88

    Article  Google Scholar 

  • Aksoy H, Kaya Y, Ozturk M, Secgin Z, Onder H, Okumus A (2017) Pseudomonas putida Induced response in phenolic profile of tomato seedlings (Solanum lycopersicum L.) infected by Clavibacter michiganensis subsp. michiganensis. Biol Control 105:6–12

    Article  CAS  Google Scholar 

  • Almaghrabi OA, Massoud Samia I, Abdelmoneim Tamer S (2013) Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J Biol Sci 20:57–61

    Article  Google Scholar 

  • Ashraf MS, Khan TA (2010) Integrated approach for the management of Meloidogyne javanica on eggplant using oil cakes and biocontrol agents. Arch Phytopathol Plant Prot 43:609–614

    Article  Google Scholar 

  • Babu AN, Jogaiah S, Ito S, Nagaraj AK, Tran LP (2015) Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Sci 231:62–73

    Article  CAS  Google Scholar 

  • Benhamou N, Kloepper JW, Tuzun S (1998) Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultra structure and cytochemistry of the host response. Planta 204:153–168

    Article  CAS  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  Google Scholar 

  • Budi SW, Van TD, Arnould C, Dumas-Gaudot E, Gianinazzi-Pearson V, Gianinazzi S (2000) Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil borne pathogenic bacteria. Appl Soil Ecol 15:191–199

    Article  Google Scholar 

  • Burkhead KD, Schisler DA, Slininger PJ (1994) Pyrrolnitrin production by biological-control agent Pseudomonas cepacia B37w in culture and in colonized wounds of potatoes. Appl Environ Microbiol 60:2031–2039

    CAS  Google Scholar 

  • Cabanas CGL, Schilirò E, Corredor AV, Blanco JM (2014) The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots. Front Microbiol 5:427

    Google Scholar 

  • Chalupowicz L, Barash I, Reuven M, Dror O, Sharabani G, Gartemann KH, Eichenlaub R, Sessa G, Manulis-Sasson S (2016) Differential contribution of Clavibacter michiganensis virulence factors to systemic and local infection in tomato. Mol Plant Pathol. doi:10.1111/mpp.12400

    Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Van der Bij AJ, Van der Drift KMGM, Schripsema J, Kroon B, Scheffer RJ, Keel C, Bakker PAHM, De Bruijn FJ, Thomas-Oates JE, Lugtenberg BJJ (1998) Biocontrol by phenazine-1-carboxamide producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporumf. sp. radicis lycopersici. Mol Plant Microbe Interact 10:79–86

    Article  Google Scholar 

  • Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47:289–297

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  Google Scholar 

  • De Curtis F, Lima G, Vitullo D, De Cicco V (2010) Biocontrol of Rhizoctonia solani and Sclerotium rolfsii on tomato by delivering antagonistic bacteria through a drip irrigation system. Crop Prot 29(7):663–670

    Article  Google Scholar 

  • Duffy BK, Defago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    CAS  Google Scholar 

  • Dun-chun HE, Zhan J, Xie L (2016) Problems, challenges and future of plant disease management: from an ecological point of view. J Integ Agri 15(4):705–715

    Article  Google Scholar 

  • Elad Y, Zimand G, Zaqs Y, Zuriel S (1993) Use of Trichoderma harzianum in combination or alternation with fungicides to control cucumber grey mould (Botrytis cinerea) under commercial greenhouse conditions. Plant Pathol 42:324–332

    Article  CAS  Google Scholar 

  • Flores-Fargas RD, O’Hara GW (2006) Isolation and characterization of rhizosphere bacteria with potential for biological control of weeds in vine yards. J Appl Microbiol 100:946–954

    Article  CAS  Google Scholar 

  • Foolad MR, Merk HL, Ashrafi H (2008) Genetics, genomics and breeding of late blight and early blight resistance in tomato. Crit Rev Plant Sci 27:75–107

    Article  CAS  Google Scholar 

  • Fravel DR (1988) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol 26:75–91

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. doi:10.6064/2012/963401

    Google Scholar 

  • Gopalakrishnan S, Pande S, Sharma M, Humayun P, Keerthi Kiran BK, Sandeep D et al (2011) Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Prot 30:1070–1078

    Article  CAS  Google Scholar 

  • Goudjal Y, Toumatiaa O, Yekkoura A, Sabaoua N, Mathieuc F, Zitounia A (2014) Biocontrol of Rhizoctonia solani damping-off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara. Microbiol Res 169:59–65

    Article  CAS  Google Scholar 

  • Gowtham HG, Hariprasad P, Nayak SC, Niranjana SR (2016) Application of rhizobacteria antagonistic to Fusarium oxysporum f. sp. lycopersici for the management of Fusarium wilt in tomato. Rhizosphere 2:72–74

    Article  Google Scholar 

  • Gravel V, Martinez C, Antoun H, Tweddell RJ (2005) Antagonist microorganisms with the ability to control Pythium damping-off of tomato seeds in rockwool. Bio Control 50(5):771–786

    Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3(4):307–319

    Article  CAS  Google Scholar 

  • Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008) Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing actinomycetes in a P-deficient soil under greenhouse conditions. Appl Soil Ecol 40:510–517

    Article  Google Scholar 

  • Hammami I, Hsouna AB, Hamdi N, Gdoura R, Triki MA (2013) Isolation and characterization of rhizosphere bacteria for the biocontrol of the damping-off disease of tomatoes in Tunisia. C R Biol 336(11–12):557–564

    Article  Google Scholar 

  • Handelsman J, Stab EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8:1855–1869

    Article  CAS  Google Scholar 

  • Hang NTT, Oh SO, Kim GH, Hur JS, Koh YJ (2005) Bacillus subtilis S1-0210 as a biocontrol agent against Botrytis cinerea in strawberries. Plant Pathol J 21:59–63

    Article  Google Scholar 

  • Helbig J (2001) Biological control of Botrytis cinerea Pers. Ex Fr. in strawberry by Paenibacillus polymyxa (isolate 18191). J Phytopathol 149:265–273

    Article  Google Scholar 

  • Huang X, Zhang N, Yong X, Yang X, Shen Q (2011) Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43. Microbiol Res 167:135–143

    Article  CAS  Google Scholar 

  • Huang J, Wei Z, Tan S, Mei X, Yin S, Shen Q, Xu Y (2013) The rhizosphere soil of diseased tomato plants as a source for novel microorganisms to control bacterial wilt. Appl Soil Ecol 72:79–84

    Article  Google Scholar 

  • Hunt DJ, Handoo ZA (2009) Taxonomy, identification and principal species. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CABI, Wallingford, pp 55–97

    Chapter  Google Scholar 

  • Jasim B, Joseph AA, John CJ, Mathew J, Radhakrishnan EK (2013) Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech. doi:10.1007/S13205-013-0143-3

    Google Scholar 

  • Kalbe C, Marten P, Berg G (1996) Strains of the genus Serratia as beneficial rhizobacteria of oilseed rape with antifungal properties. Microbiol Res 151:433–439

    Article  CAS  Google Scholar 

  • Kallo G (1991) Genetic improvement of tomato. Springer, Berlin

    Book  Google Scholar 

  • Kesavan V, Chaudhary B (1977) Screening for resistance to Fusarium wilt of tomato. SABRO J 9:51–65

    Google Scholar 

  • Khan N, Mishra A, Nautiyal CS (2012) Paenibacillus lentimorbus B-30488r controls early blight disease in tomato by inducing host resistance associated gene expression and inhibiting Alternaria solani. Biol Cont 62:65–74

    Article  Google Scholar 

  • Kilani-Feki O, Khedher SB, Dammak M, Kamoun A, Jabnoun-Khiareddine H, Daami-Remadi M, Tounsi S (2016) Improvement of antifungal metabolites production by Bacillus subtilis V26 for biocontrol of tomato postharvest disease. Biol Control 95:73–82

    Article  CAS  Google Scholar 

  • Kloepper JW (1993) Plant growth-promoting rhizobacteria as biological control agents. In: Metting B (ed) Soil microbial technologies. Marcel Dekker, New York, pp 255–274

    Google Scholar 

  • Kobayashi DY, Reedy RM, Bick JA, Oudemans PV (2002) Characterization of chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Appl Environ Microbiol 68:1047–1054

    Article  CAS  Google Scholar 

  • Konappa NM, Maria M, Uzma F, Krishnamurthy S, Nayaka SC, Niranjana SR, Chowdappa S (2016) Lactic acid bacteria mediated induction of defense enzymes to enhance the resistance in tomato against Ralstonia solanacearum causing bacterial wilt. Sci Hortic 207:183–192

    Article  CAS  Google Scholar 

  • Kriaa M, Hammami I, Sahnoun M, Azebou MC, Triki MA, Kammoun R (2015) Biocontrol of tomato plant diseases caused by Fusarium solani using a new isolated Aspergillus tubingensis CTM 507 glucose oxidase. C R Biol 338(10):666–677

    Article  Google Scholar 

  • Kumar A, Singh R, Giri DD, Singh PK, Pandey KD (2014) Effect of Azotobacter chroococcum CL13 inoculation on growth and curcumin content of turmeric (Curcuma longa L.). Int J Curr Microbiol App Sci 3(9):275–283

    CAS  Google Scholar 

  • Kumar A, Vandana RS, Singh M, Pandey KD (2015a) Plant growth promoting rhizobacteria (PGPR). A promising approach for disease management. In: Singh JS, Singh DP (eds) Microbes and environmental management. Studium Press, New Delhi, pp 195–209

    Google Scholar 

  • Kumar A, Vandana Yadav A, Giri DD, Singh PK, Pandey KD (2015b) Rhizosphere and their role in plant–microbe interaction. In: Chaudhary KK, Dhar DW (eds) Microbes in soil and their agricultural prospects. Nova Science Publisher, Inc, Hauppauge, pp 83–97

    Google Scholar 

  • Kumar V, Kumar A, Pandey KD, Roy BK (2015c) Isolation and characterization of bacterial endophytes from the roots of Cassia tora L. Ann Microbiol 65:1391–1399

    Article  CAS  Google Scholar 

  • Kumar A, Singh R, Yadav A, Giri DD, Singh PK, Pandey KD (2016a) Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech 6:60

    Article  Google Scholar 

  • Kumar A, Vandana Singh M, Singh PP, Singh SK, Singh PK, Pandey KD (2016b) Isolation of plant growth promoting rhizobacteria and their impact on growth and curcumin content in Curcuma longa L. Biocatal Agric Biotechnol 8:1–7

    Google Scholar 

  • Labuschagne N, Pretorius T, Idris AM (2010) Plant growth-promoting rhizobacteria as biocontrol agents against soil-borne plant diseases. Microbiol Monogr 18:211–230

    Article  Google Scholar 

  • Larkin RP, Fravel DR (1998) Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Dis 82:1022–1028

    Article  Google Scholar 

  • Laurence MH, Summerell BA, Burgess LW, Liew ECY (2014) Genealogical concordance phylogenetic species recognition in the Fusarium oxysporum species complex. Fungal Biol 118:374–384

    Article  Google Scholar 

  • Li QL, Ning P, Zheng L, Huang JB, Li GQ, Hsiang T (2011) Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit. Biol Control 61:113–120

    Article  CAS  Google Scholar 

  • Ligon JM, Hill DS, Hammer PE, Torkewitz NR, Hofmann D, Kempf HJ, van Pee KH (2000) Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag Sci 56:688–695

    Article  CAS  Google Scholar 

  • Lima G, Ippolito A, Nigro F, Salerno M (1997) Effectiveness of Aureobasidium pullulans and Candida oleophila against post-harvest strawberry rots. Postharvest Biol Technol 10:169–178

    Article  Google Scholar 

  • Loganathan P, Vigneswaran S, Kandasamy J, Bolan NS (2014) Removal and recovery of phosphate from water using sorption. Crit Rev Environ Sci Technol 44(8):847–907

    Article  CAS  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Application of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    Article  CAS  Google Scholar 

  • Ma X, Wang X, Cheng J, Nie X, Yu X, Zhao Y, Wang W (2015) Microencapsulation of Bacillus subtilis B99-2 and its biocontrol efficiency against Rhizoctonia solani in tomato. Biol Control 90:34–41

    Article  Google Scholar 

  • Mari M, Guizzardi M, Brunelli M, Folchi A (1996) Post-harvest biological control of grey mould (Botrytis cinerea Pers.: Fr.) on fresh-market tomatoes with Bacillus amyloliquefaciens. Crop Prot 15:699–705

    Article  Google Scholar 

  • Martínez-Hidalgo P, García JM, Pozo MJ (2015) Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules. Front Microbiol 6:922

    Article  Google Scholar 

  • McGovern RJ (2015) Management of tomato diseases caused by Fusarium oxysporum. Crop Prot. doi:10.1016/j.cropro.2015.02.021

    Google Scholar 

  • Mehari ZH, Elad Y, Rav-David D, Graber ER, Harel YM (2015) Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling. Plant Soil 395(1–2):31

    Article  CAS  Google Scholar 

  • Nawangsih AA, Damayanti I, Wiyono S, Kartika JG (2011) Selection and characterization of endophytic bacteria as biocontrol agents of tomato bacterial wilt disease. Hayati J Biosci 18:66–70

    Article  Google Scholar 

  • Nelson MN, Sorenson J (1999) Chitinolytic activity of Pseudomonas fluorescens isolates from barley and sugar beet rhizosphere. FEMS Microbiol Ecol 30:217–227

    Article  Google Scholar 

  • Nowicki M, Foolad MR, Nowakowska M, Kozik EU (2012) Potato and tomato late blight caused by Phytophthora infestans: an overview of pathology and resistance breeding. Plant Dis 96:4–17

    Article  Google Scholar 

  • Nowicki M, Kozik EU, Foolad MR (2013) Late blight of tomato. Translational genomics for crop breeding, volume I: biotic stress. 1st edn. Varshney RK, Tuberosa R (eds) Wiley, Hoboken

  • Oku S, Komastu A, Tajima T, Nakashimada Y, Kato J (2012) Identification of chemotaxis sensory proteins for aminoacids in Pseudomonas fluorescens Pf0-1 and their involvement in chemo taxis to tomato root exudates and root colonization. Microbes Environ 27:462–469

    Article  Google Scholar 

  • Omar I, O’neill TM, Rossall S (2006) Biological control of Fusarium crown and root rot of tomato with antagonistic bacteria and integrated control when combined with the fungicide carbendazim. Plant Pathol 55(1):92–99

    Article  CAS  Google Scholar 

  • Panthee DR, Chen F (2010) Genomics of fungal disease resistance in tomato. Curr Genom 11:30–39

    Article  CAS  Google Scholar 

  • Pastor N, Carlier E, Andrés J, Rosas SB, Rovera M (2012) Characterization of rhizosphere bacteria for control of phytopathogenic fungi of tomato. J Environ Manag 95:S332–S337

    Article  CAS  Google Scholar 

  • Pérez-Montano F, Alias-Villegas C, Bellogin RA, del Cerro P, Espuny MR, Jimenez-Guerrero I, Lopez-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336

    Article  Google Scholar 

  • Punja ZK, Rodriguez G, Tirajoh A (2016) Effects of Bacillus subtilis strain QST 713 and storage temperatures on post-harvest disease development on greenhouse tomatoes. Crop Prot 84:98–104

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agent. Anton van Leeuwenhoek 81:537–547

    Article  CAS  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Innduction of systemic resistance by plant growth promoting rhizobacteria in crop against pest and diseases. Crop Prot 20:1–11

    Article  CAS  Google Scholar 

  • Ramyabharathi SA, Meena B, Raguchander T (2012) Induction of chitinase and b-1,3- glucanase PR proteins in tomato through liquid formulated Bacillus subtilis EPCO 16 against Fusarium wilt. J Today’s Biol Sci Res Rev JTBSRR 1(1):50–60

    Google Scholar 

  • Reddy SA, Bagyaraj DJ, Kale RD (2012) Management of tomato bacterial spot caused by Xanthomonas campestris using vermin compost. J Biopest 5(1):10–13

    Google Scholar 

  • Romero FM, Marina M, Pieckenstain FL (2016) Novel components of leaf bacterial communities of field-grown tomato plants and their potential for plant growth promotion and biocontrol of tomato diseases. Res Microbiol 167(3):222–233

    Article  CAS  Google Scholar 

  • Rossello MA, Descals E, Cabrer B (1993) Nia epidermoidea, a new marine gasteromycete. Mycol res 97(1):68–70

    Article  Google Scholar 

  • Shahidi Bonjar GH, Barkhordar B, Pakgohar N, Aghighi S, Biglary S, Rashid Farrokhi P et al (2006) Biological control of Phytophthora drechsleri Tucker, the causal agent of pistachio gummosis, under greenhouse conditions by use of actinomycetes. Plant Pathol J 5:20–23

    Article  Google Scholar 

  • Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358

    CAS  Google Scholar 

  • Sharma RC, Sharma JN (2005) Challenging problems in horticulture and Forest pathology. Indus publishing Company, New Delhi

    Google Scholar 

  • Siddiqui IA, Shaukat SS (2003) Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2,4-diacetylpholoroglucinol. Soil Biol Biochem 35:1615–1623

    Article  CAS  Google Scholar 

  • Siddiqui A, Haas D, Heeb S (2005) Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root knot nematode Meloydogyne incognita. Appl Environ Microbiol 71:5646–5649

    Article  CAS  Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  Google Scholar 

  • Someya N, Kataoka N, Komagata T, Hirayae K, Hibi T, Akutsu K (2000) Biological control of cyclamen soil borne diseases by Serratia marcescens strain B2. Plant Dis 84:334–340

    Article  Google Scholar 

  • Srinivasan K, Gilardi G, Garibaldi A, Gullino ML (2009) Bacterial antagonists from used rockwool soilless substrates suppress fusarium wilt of tomato. J Plant Pathol 91(1):147–154

    Google Scholar 

  • Sundaramoorthy S, Balabaskar P (2013) Biocontrol efficacy of Trichoderma spp. against wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. J App Biol Biotechnol 1(03):36–40

    Google Scholar 

  • Tan H, Zhou S, Deng Z, He M, Cao L (2011) Ribosomal-sequence-directed selection for endophytic streptomycete strains antagonistic to Ralstonia solanacearum to control tomato bacterial wilt. Biol Control 59:245–254

    Article  Google Scholar 

  • Thomashow LS, Weller DM (1995) Current concepts in the use of introduced bacteria for biological disease control. In: Stacey G, Keen N (eds) Plant–microbe interactions. Chapman and Hall, New York, pp 187–235

    Google Scholar 

  • Van der Ent S, Verhagen BW, Van Doorn R, Bakker D, Verlaan MG, Pel MJ, Joosten RG, Proveniers MC, Van Loon LC, Ton J, Pieterse CM (2008) MYB72 is required in early signaling steps of rhizobacteriainduced systemic resistance in Arabidopsis. Plant Physiol 146(3):1293–1304

    Article  CAS  Google Scholar 

  • Van der Ent S, Van Wees SCM, Pieterse CMJ (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochem 70:1581–1588

    Article  CAS  Google Scholar 

  • Van Loon LC, Bakker PA, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Ann Rev Phytopathol 36:453–483

    Article  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Walker JC (1971) Fusarium wilt of tomato. Monogr. 6. APS Press, St. Paul

    Google Scholar 

  • Walsh UF, Morrissey JP, O’Gara F (2001) Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotech 12:289–295

    Article  CAS  Google Scholar 

  • Wei Z, Huang J, Tan S, Mei X, Shen Q, Xu Y (2013) The congeneric strain Ralstonia pickettii QL-A6 of Ralstonia solanacearum as an effective biocontrol agent for bacterial wilt of tomato. Biol Control 65(2):278–285

    Article  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52(487):511

    Google Scholar 

  • Wu CH, Bernard SM, Andersen GL, Chen W (2009) Developing microbe–plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microb Biotechnol 2:428–440

    Article  CAS  Google Scholar 

  • Yang Z, Yuan L, Duan Y (2011) The investigation and prevention of tomato root knot nematode in Yunnan Yuanmou. Plant Prot Technol 44–45

  • You J, Zhang J, Wu M, Yang L, Chen W, Li G (2016) Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato. Biol Control 101:31–38

    Article  Google Scholar 

  • Zhou L, Yuen G, Wang Y, Wei L, Ji G (2016) Evaluation of bacterial biological control agents for control of root-knot nematode disease on tomato. Crop Prot 84:8–13

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to University Grants Commission and CSIR, New Delhi for granting fellowship in the form of JRF and SRF and also Head, Centre of Advanced Study in Botany, Banaras Hindu University for providing the laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar.

Ethics declarations

Conflict of interest

None of authors have conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V.K., Singh, A.K. & Kumar, A. Disease management of tomato through PGPB: current trends and future perspective. 3 Biotech 7, 255 (2017). https://doi.org/10.1007/s13205-017-0896-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0896-1

Keywords

Navigation