3 Biotech

, 7:75 | Cite as

Enhanced degradation of polyhydroxyalkanoates (PHAs) by newly isolated Burkholderia cepacia DP1 with high depolymerase activity

  • Nor Azura Azami
  • Ira Aryani Wirjon
  • Shantini Kannusamy
  • Aik-Hong Teh
  • Amirul Al-Ashraf Abdullah
Original Article

Abstract

The contribution of microbial depolymerase has received much attention because of its potential in biopolymer degradation. In this study, the P(3HB) depolymerase enzyme of a newly isolated Burkholderia cepacia DP1 from soil in Penang, Malaysia, was optimized using response surface methodology (RSM). The factors affecting P(3HB) depolymerase enzyme production were studied using one-variable-at-a-time approach prior to optimization. Preliminary experiments revealed that the concentration of nitrogen source, concentration of carbon source, initial pH and incubation time were among the main factors influencing the enzyme productivity. An increase of 9.4 folds in enzyme production with an activity of 5.66 U/mL was obtained using optimal medium containing 0.028% N of di-ammonium hydrogen phosphate and 0.31% P(3HB-co-21%4HB) as carbon source at the initial pH of 6.8 for 38 h of incubation. Moreover, the RSM model showed great similarity between predicted and actual enzyme production indicating a successful model validation. This study warrants the ability of P(3HB) degradation by B. cepacia DP1 in producing higher enzyme activity as compared to other P(3HB) degraders being reported. Interestingly, the production of P(3HB) depolymerase was rarely reported within genus Burkholderia. Therefore, this is considered to be a new discovery in the field of P(3HB) depolymerase production.

Keywords

Biodegradable Extracellular P(3HB) depolymerase enzyme Polyhydroxyalkanoates (PHAs) Poly(3-hydroxybutyrate) [P(3HB)] P(3HB-co-4HB) Response surface methodology (RSM) 

References

  1. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472Google Scholar
  2. Asano Y, Watanabe S (2001) Isolation of poly(3-hydroxybutyrate) (PHB)-degrading microorganisms and characterization of PHB-depolymerase from Arthrobacter sp. strain W6. Biosci Biotechnol Biochem 65:1191–1194. doi:10.1271/bbb.65.1191 CrossRefGoogle Scholar
  3. Bosshard PP, Abels S, Zbinden R, Böttger EC, Altwegg M (2003) Ribosomal DNA sequencing for identification of aerobic Gram-positive rods in the clinical laboratory (an 18-Month Evaluation). J Clin Microbiol 41:4134–4140. doi:10.1128/JCM.41.9.4134-4140.2003 CrossRefGoogle Scholar
  4. Boyandin AN, Prudnikova SV, Karpov VA, Ivonin VN, Ðô͂ NL, Nguyê͂n TH, Gitelson II (2012) Microbial degradation of polyhydroxyalkanoates in tropical soils. Int Biodeterior Biodegrad 83:77–84. doi:10.1016/j.ibiod.2013.04.014 CrossRefGoogle Scholar
  5. Briese BH, Jendrossek D, Schlegel HG (1994) Degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by aerobic sewage sludge. FEMS Microbiol Lett 117:107–111. doi:10.1078/0944-5013-00115 CrossRefGoogle Scholar
  6. Choi GC, Kim HW, Rhee Y (2004) Enzymatic and non-enzymatic degradation of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolyesters produced by Alcaligenessp. MT-16. J Microbiol 42:346–352 PMID: 15650693 Google Scholar
  7. Doi Y, Kanesawa Y, Kunioka M, Saito T (1990) Biodegradation of microbial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules 23:26–31. doi:10.1021/ma00203a006 CrossRefGoogle Scholar
  8. Doi Y, Mukai K, Kasuya K, Yamada K (1994) Biodegradation of biosynthetic and chemosynthetic polyhydroxyalkanoates. In: Studies in polymer science, 3rd International scientific Workshop, Elsevier, New York, pp 39–51Google Scholar
  9. Elbanna K, Lütke-Eversloh T, Jendrossek D, Luftmann H, Steinbüchel A (2004) Studies on the biodegradability of polythioester copolymers and homopolymers by polyhydroxyalkanoate (PHA)-degrading bacteria and PHA depolymerases. Arch Microbiol 182:212–225. doi:10.1007/s00203-004-0715-z CrossRefGoogle Scholar
  10. Faezah A, Amirul AA (2013) Preparation and characterization of polyhydroxyalkanoates macroporous scaffold through enzyme-mediated modifications. Appl Biochem Biotechnol 170:690–709. doi:10.1007/s12010-013-0216-0 CrossRefGoogle Scholar
  11. Jendrossek D (2005) Extracellular polyhydroxyalkanoate (PHA) depolymerases: the key enzymes of PHA degradation. Biopolymers. doi:10.1002/3527600035.bpol3b03 Google Scholar
  12. Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates*. Annu Rev Microbiol 56:403–432. doi:10.1146/annurev.micro.56.012302.160838 CrossRefGoogle Scholar
  13. Jendrossek D, Knoke I, Habibian RB, Steinbüchel A, Schlegel HG (1993) Degradation of poly(3-hydroxybutyrate), PHB, by bacteria and purification of a novel PHB depolymerase from Comamonas sp. J Polym Environ 1:53–63. doi:10.1007/BF01457653 CrossRefGoogle Scholar
  14. Jendrossek D, Schirmer A, Schlegel H (1996) Biodegradation of polyhydroxyalkanoic acids. J Microbiol Biotechnol 46:451–463. doi:10.1007/s002530050844 CrossRefGoogle Scholar
  15. Kahar P, Tsuge T, Taguchi K, Doi Y (2004) High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym Degrade Stab 83:79–86. doi:10.1016/S0141-3910(03)00227-1 CrossRefGoogle Scholar
  16. Knoll M, Hamm TM, Wagner F, Martinez V, Pleiss J (2009) The PHA depolymerase engineering database: a systematic analysis tool for the diverse family of polyhydroxyalkanoate (PHA) depolymerases. BMC Bioinform 10:1–8. doi:10.1186/1471-2105-10-89 CrossRefGoogle Scholar
  17. Kobayashi T, Sugiyama A, Kawase Y, Saito T, Mergaert J, Swings J (1999) Biochemical and genetic characterization of an extracellular Poly(3-hydroxybutyrate) depolymerase from Acidovorax sp. strain TP4. J Environ Polym Degr 7:9–18. doi:10.1023/A:1021885901119 CrossRefGoogle Scholar
  18. Lee SY, Choi J (1999) Production and degradation of polyhydroxyalkanoates in waste environment. Waste Manage 19:133–139. doi:10.1016/S0956-053X(99)00005-7 CrossRefGoogle Scholar
  19. Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. J Microbiol Biotechnol 81:629–636. doi:10.1007/s00253-008-1681-1 CrossRefGoogle Scholar
  20. Liu Y, De Schryver P, Van Delsen B, Maignien L, Boon N, Sorgeloos P, Verstraete W, Bossier P, Defoirdt T (2010) PHB-degrading bacteria isolated from the gastrointestinal tract of aquatic animals as protective actors against luminescent vibriosis. FEMS Microbiol Ecol 74:196–204. doi:10.1111/j.1574-6941.2010.00926.x CrossRefGoogle Scholar
  21. Lodhi AF, Hasan F, Shah Z, Hameed A, Faisal S, Shah AA (2011) Optimization of culture conditions for the production of poly (3-hydroxybutyrate) depolymerase from newly isolated Aspergillus fumigatus from soil. Pak J Bot 43:1361–1372Google Scholar
  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275 Google Scholar
  23. Magda MA, Sanaa T, Huda A, Qari Madeha NAS (2015) Poly-β-hydroxy butyrate depolymerase from Streptomyces Lydicus Mm10, isolated from wastewater sample. Int J Agric Biol 17:891–900. doi:10.17957/IJAB/15.0023 CrossRefGoogle Scholar
  24. Manna A, Paul AK (2000) Degradation of microbial polyester poly (3-hydroxybutyrate) in environmental samples and in culture. Biodegradation 11:323–329. doi:10.1023/A:1011162624704 CrossRefGoogle Scholar
  25. Manna A, Giri P, Paul AK (1999) Degradation of poly (3-hydroxybutyrate) by soil Streptomycetes. World J Microbiol Biotechnol 15:705–709. doi:10.1023/A:1008980117018 CrossRefGoogle Scholar
  26. Mergaert J, Webb A, Anderson C, Wouters A, Swings J (1993) Microbial degradation of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in soils. Appl Environ Microbiol 59:3233–3238Google Scholar
  27. Muller B, Jendrossek D (1993) Purification and properties of poly(3-hydroxyvaleric acid) depolymerase from Pseudomonas lemoignei. Appl Microbiol Biotechnol 38:487–492. doi:10.1007/BF00242943 CrossRefGoogle Scholar
  28. Nadhman A, Hasan F, Shah Z, Hameed A (2012) Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) depolymerase from Aspergillus sp. NA-251. Prikl Biokhim Microbiol 48:531–536. doi:10.1134/S0003683812050080 Google Scholar
  29. Payne GW, Vandamme P, Morgan SH, LiPuma JJ, Coenye T, Weightman AJ, Jones TH, Mahenthiralingam E (2005) Development of a recA gene-based identification approach for the entire Burkholderia genus. Appl Environ Microbiol 71:3917–3927. doi:10.1128/AEM.71.7.3917-3927.2005 CrossRefGoogle Scholar
  30. Sandhya C, Nampoothiri KM, Pandey A (2005) Microbial proteases. In: Microbial enzyme and biotransformations. In: Barredo JL (ed) Humana Press Inc., Totowa, pp 165–180Google Scholar
  31. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265. doi:10.1016/j.biotechadv.2007.12.005 CrossRefGoogle Scholar
  32. Shantini K, Yahya ARM, Amirul AA (2012) Empirical modeling development for integrated process optimization of poly(3-hydrxybutyrate-co-3-hydroxyvalerate) production. J Appl Polym Sci 125:2155–2162. doi:10.1002/app.36345 CrossRefGoogle Scholar
  33. Sonal JW, Sohel SS, Riyaz ZS (2015) Medium optimization for PHB depolymerase production by Stenotrophomonas Maltophilia using Plackett Burman design and response surface methodology. Int J Sci Eng Res (IJSER) 6:818–829Google Scholar
  34. Spilker T, Baldwin A, Bumford A, Dowson CG, Mahenthiralingam E, Lipuma JJ (2009) Expanded multilocus sequence typing for Burkholderia Species. J Clin Microbiol 47:2607–2610. doi:10.1128/JCM.00770-09 CrossRefGoogle Scholar
  35. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555. doi:10.1016/S0079-6700(00)00035-6 CrossRefGoogle Scholar
  36. Tokiwa Y, Calabia BP (2004) Review degradation of microbial polyesters. Biotechnol Lett 26:1181–1189. doi:10.1023/B:BILE.0000036599.15302.e5 CrossRefGoogle Scholar
  37. Tsuge T (2002) Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J Biosci Bioeng 94:579–584. doi:10.1263/jbb.94.579 CrossRefGoogle Scholar
  38. Vigneswari S, Lee TS, Bhubalan K, Amirul AA (2015) Extracellular polyhydroxyalkanoate depolymerase by Acidovorax sp. DP5. Enzyme Res 2015:1–8. doi:10.1155/2015/212159 CrossRefGoogle Scholar
  39. Wang Y, Li F, Wang ZY, Liu DB (2012) Xia HM Purification and properties of an extracellular polyhydroxybutyrate depolymerase from Pseudomonas Mendocina DSWY0601. Chem Res Chinese Univ 28:459–464Google Scholar
  40. Yamashita K, Aoyagi Y, Abe H, Doi Y (2001) Analysis of adsorption function of polyhydroxybutyrate depolymerase from Alcaligenes faecalis T1 by using a quartz crystal microbalance. Biomacromolecules 2:25–28. doi:10.1021/bm0000844 CrossRefGoogle Scholar
  41. Yoshie N, Oike Y, Kasuya K, Doi Y, Inoue Y (2002) Change of surface structure of poly(3-hydroxybutyrate) film upon enzymatic hydrolysis by PHB depolymerase. Biomacromolecules 3:1320–1326. doi:10.1021/bm020077a CrossRefGoogle Scholar
  42. Zhang L, Xie G (2007) Diversity and distribution of Burkholderia cepacia complex in the rhizosphere of rice and maize. FEMS Microbiol Lett 266:231–235. doi:10.1111/j.1574-6968.2006.00530.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Nor Azura Azami
    • 1
    • 2
  • Ira Aryani Wirjon
    • 2
  • Shantini Kannusamy
    • 1
  • Aik-Hong Teh
    • 2
  • Amirul Al-Ashraf Abdullah
    • 1
    • 2
    • 3
  1. 1.School of Biological SciencesUniversiti Sains MalaysiaGelugorMalaysia
  2. 2.Centre for Chemical BiologyBayan LepasMalaysia
  3. 3.Malaysian Institute of Pharmaceuticals and Nutraceuticals, NIBMPenangMalaysia

Personalised recommendations