Skip to main content
Log in

Polymorphism analysis in identification of genetic variation and relationships among Stylosanthes species

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

A total of 148 accessions representing six important species of the genus Stylosanthes, including S. guianensis, S. hamata, S. scabra, S. seabrana, S. macrocephala, and S. capitata, were used to evaluate genetic variation and relationships using sequence-related amplified polymorphism markers. The results showed that the 18 selected primer pairs generated 138 distinct fragments. The fragment sizes ranged from 150 to 2000 bp. Genetic similarity coefficients among the 148 accessions ranged from 0.51 to 0.99, with an average of 0.79. The effective allele number (ne) generated by the 18 primer pairs averaged 1.3552 and ranged from 1.2069 to 1.6080; Nei’s gene diversity (He) ranged from 0.1304 to 0.3207, with an average of 0.2070; and Shannon’s information index (I) averaged 0.3213 and ranged from 0.2233 to 0.4582. The unweighted pair-group method with arithmetic averages at the 0.69 similarity level separated the 148 accessions into two distinct groups. One group belonged to S. guianensis, and the other group belonged to the non-S. guianensis type. This study verified that Stylosanthes have rich genetic variation, which is an excellent basis for Stylosanthes breeding for new cultivars. This study demonstrates that the SRAP technique is a reliable tool for differentiating Stylosanthes accessions and for discerning genetic relationship among them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Budak H, Shearman RC, Gaussion RE, Dweikat I (2004) Application of sequence-related amplified polymorphism markers for characterization of turfgrass species. HortScience 39(5):955–958

    CAS  Google Scholar 

  • Burt RL, Miller CP (1975) Stylosanthes—a source of pasture legumes. Trop Grassl 9(2):117–123

    Google Scholar 

  • Costa NMS, Ferreira MB (1984) Some Brazilian species of Stylosanthes. In: Stace HM, Edye LA (eds) The biology and agronomy of Stylosanthes. Academic Press, Sydney, pp 53–101

    Google Scholar 

  • Curtis MD, Manners JM, Cameron DF (1995) Molecular evidence that diploid Stylosanthes humilis and diploid Stylosanthes hamata are progenitors of allotetraploid Stylosanthes hamata cv. ‘Verano’. Genome 38(2):344–348

    Article  CAS  Google Scholar 

  • Dongre AB, Raut MP, Bhandarkar MR, Meshram KJ (2011) Identification and genetic purity testing of cotton F1 hybrid using molecular markers. Indian J Biotechnol 10(3):301–306

    CAS  Google Scholar 

  • Glover BJ, Gillies ACM, Abbott RJ (1994) Use of the polymerase chain reaction to investigate the delimitation of two agronomically important species of Stylosanthes (Aubl.) Sw. Bot J Scot 47(1):83–96

    Article  Google Scholar 

  • Huang CQ, Liu GD, Bai CJ, Wang WQ, Tang J (2014) Application of SRAP markers in the identification of Stylosanthes guianensis hybrids. Mol Biol Rep 41(9):5923–5929

    Article  CAS  Google Scholar 

  • Jiang CS, Ma XR, Zhou DM, Zhang YZ (2005) AFLP analysis of genetic variability among Stylosanthes guianensis accessions resistant and susceptible to the stylo anthracnose. Plant Breed 124(6):595–598

    Article  CAS  Google Scholar 

  • Kang SY, Lee GJ, Lim KB, Lee HJ, Park IS, Chung SJ, Kim JB, Kim DS, Rhee HK (2008) Genetic diversity among Korean bermudagrass (Cynodon spp.) ecotypes characterized by morphological, cytological and molecular approaches. Mol Cells 25(2):163–171

    CAS  Google Scholar 

  • Kazan K, Manners JM, Cameron DF (1993) Genetic relationships and variation in the Stylosanthes guianensis species complex assessed by random amplified polymorphic DNA. Genome 36(1):43–49

    Article  CAS  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103(2):455–461

    Article  CAS  Google Scholar 

  • Liu CJ, Musial JM (1997) Stylosanthes sp. aff. S. scabra: a putative diploid progenitor of Stylosanthes scabra. Pl Syst Evol 208(1):99–105

    Article  Google Scholar 

  • Liu GD, Phaikaew C, Stur WW (1997) Status of Stylosanthes development in other countries: II. Stylosanthes development and utilisation in China and south-east Asia. Trop Grassl 31:460–467

    Google Scholar 

  • Liu CJ, Musial JM, Thomas BD (1999) Genetic relationships among Stylosanthes species revealed by RFLP and STS analyses. Theor Appl Genet 99(7):1179–1186

    Article  CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA. 76(10):5269–5273

    Article  CAS  Google Scholar 

  • Santos MO, Karia CT, Resende RM, Chiari L, Jungmann L, Zucchi MI, Souza AP (2009a) Isolation and characterization of microsatellite loci in the tropical forage legume Stylosanthes guianensis (Aubl.) Sw. Conserv Genet Resour 1:43–46

    Article  Google Scholar 

  • Santos MO, Sassaki RP, Chiari L, Resende RMS, Souza AP (2009b) Isolation and characterization of microsatellite loci in tropical forage Stylosanthes capitata Vogel. Mol Ecol Resour 9(1):192–194

    Article  CAS  Google Scholar 

  • Santos MO, Sassaki RP, Ferreira THS, Resende RMS, Chiari L, Karia CT, Faleiro FG, Jungmann L, Zucchi MI, Souza AP (2009c) Polymorphic microsatellite loci for Stylosanthes macrocephala Ferr. et Costa, a tropical forage legume. Conserv Genet Resour 1:481–485

    Article  Google Scholar 

  • Santos-Garcia MO, Karia CT, Resende RMS, Chiari L, Vieira MLC, Zucchi MI, Souza AP (2012) Identification of Stylosanthes guianensis varieties using molecular genetic analysis. AoB Plants 2012:pls001

    Article  CAS  Google Scholar 

  • Sawkins MC, Mass BL, Pengelly BC, Newbury HJ, Ford-Lloyd BV, Maxted N, Smith R (2001) Geographical patterns of genetic variation in two species of Stylosanthes Sw. using amplified fragment length polymorphism. Mol Ecol 10(8):1947–1958

    Article  CAS  Google Scholar 

  • Stace HM, Cameron DF (1984) Cytogenetics and the evolution of Stylosanthes. In: Stace HM, Edye LA (eds) The biology and agronomy of Stylosanthes. Academic Press, Sydney, pp 49–72

    Chapter  Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17(16):6463–6471

    Article  CAS  Google Scholar 

  • Vander Stappen J, Volckaert G (1999) Molecular characterization and classification of Stylosanthes mexicana, S. macrocarpa, S. seabrana and S. fruticosa by DNA sequence analysis of two chloroplast regions. DNA Seq 10(3):199–202

    Article  CAS  Google Scholar 

  • Vander Stappen J, Weltjens I, Volckaert G (1999) Microsatellite markers in Stylosanthes guianensis. Mol Ecol 8(3):514–517

    CAS  Google Scholar 

  • Vander Stappen J, Weltjens I, Gama Lopez S, Volckaert G (2000) Genetic diversity in Mexican Stylosanthes humilis as revealed by AFLP, compared to the variability of S. humilis accessions of South American origin. Euphytica 113(2):145–154

    Article  CAS  Google Scholar 

  • Vander Stappen J, Marant S, Volckaert G (2003) Molecular characterization and phylogenetic utility of the rDNA external transcribed spacer region in Stylosanthes (Fabaceae). Theor Appl Genet 107(2):291–298

    Article  CAS  Google Scholar 

  • Vieira MC, Aguiar-perecin MLR, Martins PS (1993) A cytotaxonomic study in twelve Brazilian taxa of Stylosanthes Sw. Leguminosae. Cytologia 58(3):305–311

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414

    Article  CAS  Google Scholar 

  • Williams RJ, Reid R, Schhultze-Kraft R, Costa NM, Thomas BD (1984) Natural distribution of Stylosanthes S. In: Edye LA, tace HM (eds) The biology and agronomy of Stylosanthes. Academic Press, Sydney, pp 73–101

    Chapter  Google Scholar 

  • Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18(22):6531–6535

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and the anonymous reviewers for their valuable comments to improve this manuscript. This research was supported by the National Natural Science Foundation of China (No. 31402124) and the earmarked fund for Modern Agro-industry Technology Research System (CARS-35).

Author information

Authors and Affiliations

Authors

Contributions

CH and GL conceived and designed the experiments; CH performed the experiment, analyzed the data, and wrote this manuscript; GL and CB were responsible for the accessions collection, and discussing and reviewing the manuscript. All authors had read, critically edited, and approved the final manuscript.

Corresponding authors

Correspondence to Chunqiong Huang or Guodao Liu.

Ethics declarations

Conflicts of interest

All the authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Liu, G. & Bai, C. Polymorphism analysis in identification of genetic variation and relationships among Stylosanthes species. 3 Biotech 7, 39 (2017). https://doi.org/10.1007/s13205-017-0705-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0705-x

Keywords

Navigation