Skip to main content
Log in

Green, affordable, and unprecedented photoluminescence investigation on white emission of Y2O3:Clitoria ternatea floral extract complex to replace conventional Dy3+ doping for wLED

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The spectroscopic characteristics of the common flower Clitoria ternatea are explored for the first time. When excited, the extract shows two emission crests at 436 and 663 nm corresponding to anthocyanin delphinidin and betalains betacyanin, respectively. For practical utility, the extract is made into thin films, giving a broad emission band from 450 to 530 nm. But by this line, the luminescence spectra showed a falloff with time, through a decay rate of 0.2463 cps/h owing to aging. An anti-oxidizing agent (Y2O3)–extract complexes with different extract concentrations (1–5 ml) under different heating conditions (100–200 °C) are produced to overcome this scenario. The XRD and Raman spectra depict the fruitful complex formation in cubic structure with space group Ia3. Using UV–visible info, the bandgap is computed to be 2.381 eV. When Y2O3 and Clitoria extract are taken in the same measure, decent emission bands around 450–550 nm and 630–690 nm are observed by the FRET mechanism; giving a ninefold increment in PL intensity with CIE coordinates in the vicinity of near-white light. The trials are repeated numerous times to ensure reproducibility and the outcomes are compared with the conventional Y2O3:Dy3+-doped system, showing prime results by the Y2O3:Clitoria complex (1:1, 100 °C). This unprecedented investigation concludes the enhanced photoluminescence from Clitoria extract, which could replace conventional rare earth doping and provide a novel methodology for designing and fabricating lighting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Bispo AG Jr, de Morais AJ, Calado CMS, Mazali IO, Sigoli FA (2022) Lanthanide-doped luminescent perovskites: a review of synthesis, properties, and applications. J Lumin 252:119406

    Article  Google Scholar 

  • Brown RM, Mirkouei A, Reed D, Thompson V (2023) Current nature-based biological practices for rare earth elements extraction and recovery: bioleaching and biosorption. Renew Sustain Energy Rev 173:113099

    Article  CAS  Google Scholar 

  • Chávez-García D, Sengar P, Juárez-Moreno K, Flores DL, Calderón I, Barrera J, Hirata GA (2021) Luminescence properties and cell uptake analysis of Y2O3: Eu, Bi nanophosphors for bio-imaging applications. J Market Res 10:797–807

    Google Scholar 

  • Chen F, Wang XJ, Zhang X, Zhang C (2023) Bromide ions substitution-induced photoluminescence tuning in Cs2NaInCl6: Sb3+ double perovskite. Opt Mater 139:113750

    Article  CAS  Google Scholar 

  • Choi Y, Choi C, Bae J, Park J, Shin K (2023) Synthesis of gallium phosphide quantum dots with high photoluminescence quantum yield and their application as color converters for LEDs. J Ind Eng Chem 123:509–516

    Article  CAS  Google Scholar 

  • Cornejo CR (2016) Luminescence in rare earth ion-doped oxide compounds. In: Thirumalai J (ed) Luminescence-an outlook on the phenomena and their applications. InTech, Croatia, pp 32–63

    Google Scholar 

  • Drisya MK, Shrikumar S (2022) GC-MS analysis of ethylacetate extract of leaves of Clitoria ternatea Linn. Asian J Pharm Anal 12(1):49–52

    Google Scholar 

  • Dwivedi A, Srivastava M, Srivastava A, Upadhyay C, Srivastava SK (2022) Tunable photoluminescence and energy transfer of Eu3+, Ho3+-doped Ca0. 05Y1. 93-xO2 nanophosphors for warm white LEDs applications. Sci Rep 12(1):5824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gou Z, Wang A, Tian M, Zuo Y (2022) Pyrene-based monomer-excimer dual response organosilicon polymer for the selective detection of 2, 4, 6-trinitrotoluene (TNT) and 2, 4, 6-trinitrophenol (TNP). Mater Chem Front 6(5):607–612

    Article  CAS  Google Scholar 

  • Gupta I, Kumar P, Singh S, Bhagwan S, Kumar V, Singh D (2022) Phase recognition, structural measurements and photoluminescence studies of reddish-orange-emissive YAlO3: Sm3+ perovskite nanophosphors for NUV energized WLEDs. J Mol Struct 1267:133567

    Article  CAS  Google Scholar 

  • Hasanah NN, Mohamad Azman E, Rozzamri A, Zainal Abedin NH, Ismail-Fitry MR (2023) A systematic review of butterfly pea flower (Clitoria ternatea L.): extraction and application as a food freshness pH-indicator for polymer-based intelligent packaging. Polymers 15(11):2541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseini A, Sharifi AM, Abdollahi M, Najafi R, Baeeri M, Rayegan S, Cheshmehnour J, Hassani S, Bayrami Z, Safa M (2015) Cerium and yttrium oxide nanoparticles against lead-induced oxidative stress and apoptosis in rat hippocampus. Biol Trace Elem Res 164:80–89

    Article  CAS  PubMed  Google Scholar 

  • Hungerford G, Lemos MA, Chu BS (2019) Binding of Clitoria ternatea L. flower extract with α-amylase simultaneously monitored at two wavelengths using a photon streaming time-resolved fluorescence approach. Spectrochim Acta Part A Mol Biomol Spectrosc 211:108–113

    Article  CAS  Google Scholar 

  • Hussein GA, Gates BC (1998) Surface and catalytic properties of yttrium oxide: evidence from infrared spectroscopy. J Catal 176(2):395–404

    Article  CAS  Google Scholar 

  • Hyun JY, Kim KH, Kim JP, Im WB, Linganna K, Choi JH (2021) Enhancement of luminescence efficiency of Y2O3 nanophosphor via core/shell structure. Nanomaterials 11(6):1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia QQ, Tong L, Lun MM, Fu DW, Zhang T, Lu HF (2022) Two-dimensional organic-inorganic hybrid materials with dielectric switching and photoluminescence properties. Cryst Growth Des 22(5):2799–2805

    Article  CAS  Google Scholar 

  • Koshy RR, Koshy JT, Mary SK, Sadanandan S, Jisha S, Pothan LA (2021) Preparation of pH sensitive film based on starch/carbon nano dots incorporating anthocyanin for monitoring spoilage of pork. Food Control 126:108039

    Article  CAS  Google Scholar 

  • Kumar R, Pahar S, Chatterjee J, Dash SR, Gonnade RG, Vanka K, Sen SS (2022) Luminescent magnesium complexes with intra-and inter-ligand charge transfer. Chem Commun 58(84):11843–11846

    Article  CAS  Google Scholar 

  • Lakhera S, Devlal K, Rana M, Celik I (2023) Study of nonlinear optical responses of phytochemicals of Clitoria ternatea by quantum mechanical approach and investigation of their anti-Alzheimer activity with in silico approach. Struct Chem 34(2):439–454

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Zhang J, Shi Q, Ding L, Liu T, Fang Y (2023) Precise manipulation of excited-state intramolecular proton transfer via incorporating charge transfer toward high-performance film-based fluorescence sensing. J Am Chem Soc 145(13):7408–7415

    Article  CAS  PubMed  Google Scholar 

  • Menéndez-Velázquez A, García-Delgado AB, Morales D (2023) Human-centric lighting: rare-earth-free photoluminescent materials for correlated color temperature tunable white LEDs. Int J Mol Sci 24(4):3602

    Article  PubMed  PubMed Central  Google Scholar 

  • Planes E, Juillard S, Matheron M, Charvin N, Cros S, Qian D, Zhang F, Berson S, Flandin L (2020) Encapsulation effect on performance and stability of organic solar cells. Adv Mater Interfaces 7(15):2000293

    Article  CAS  Google Scholar 

  • Quantum Yield Calculator From Photoluminescence (PL) and UV-Vis Absorption - InstaNANO. https://instanano.com/all/characterization/pl/quantum-yield/. Accessed 15 June 2023

  • Rowland CE, Brown CW, Medintz IL, Delehanty JB (2015) Intracellular FRET-based probes: a review. Methods Appl Fluoresc 3(4):042006

    Article  PubMed  Google Scholar 

  • Shi Q, Xu S, Yang B, Duan S, Li S, Zhang D, Wang Q, Zhao L, Wang W (2020) White light emission from a single plant source extract with tunable photoluminescence. Spectrochim Acta Part A Mol Biomol Spectrosc 236:118352

    Article  CAS  Google Scholar 

  • Singh V, Mishra AK (2015) White light emission from vegetable extracts. Sci Rep 5(1):11118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundaravalli VM, Kowsalya R (2023) Phytochemical profiling and invitro antioxidant potential of Clitoria ternatea Linn seeds. Int J Multidiscip Res 5(3):1–6

    Google Scholar 

  • Veena VP, Shilpa CK, Jasira SV, Nissamudeen KM (2022) Modern era of double perovskite nano-phosphors: La2MgTiO6, Gd2MgTiO6 and Y2MgTiO6–a brief review. Z Naturforsch A 77(10):1003–1013

    Article  CAS  Google Scholar 

  • Veena VP, Shilpa CK, Jasira SV, Vini K, Nissamudeen KM (2023a) Adroit low-temperature synthesis and origin of blue–yellow–red emission in activated La2-xDyxMgTiO6 novel perovskite phosphor for WLED. J Mater Sci: Mater Electron 34(10):870

    CAS  Google Scholar 

  • Veena VP, Akshaya N, Shilpa CK, Jasira SV, Nissamudeen KM (2023b) The upshot of Li+ co-doping on white emission of La1.98Dy0.02MgTiO6 double perovskite nano phosphors. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.03.307

    Article  Google Scholar 

  • Vini K, Kumar HP, Nissamudeen KM (2020) Red light emission of Y 2 O 3: Eu 3+ nanophosphors and luminescent enhancement by the addition of gadolinium oxide as co-dopant. J Mater Sci: Mater Electron 31:5653–5666

    CAS  Google Scholar 

  • Yao X, Lewis RE, Haynes CL (2022) Synthesis processes, photoluminescence mechanism, and the toxicity of amorphous or polymeric carbon dots. Acc Chem Res 55(23):3312–3321

    Article  CAS  PubMed  Google Scholar 

  • Yuan G, Li M, Yu M, Tian C, Wang G, Fu H (2016) In situ synthesis, enhanced luminescence and application in dye sensitized solar cells of Y2O3/Y2O2S: Eu3+ nanocomposites by reduction of Y2O3: Eu3+. Sci Rep 6(1):37133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Z, Xu Y, Zhang Z et al (2020) ‘Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications. Chem Soc Rev 49(4):1109–1143

    Article  CAS  PubMed  Google Scholar 

  • Zhaxi W, Li M, Wu J, Liu L, Huang Z, Miao H, Ma X, Jiang S, Zhang Q, Huang W, Wu D (2022) A red-emitting Cu (I)–halide cluster phosphor with near-unity photoluminescence efficiency for high-power wLED applications. Molecules 27(14):4441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou N, Liu J, Deng R, Shu Y, Xiang D, Shao X (2023) Stable white light emission from a single organic molecule via intermolecular hydrogen bond to excited-state intermolecular proton transfer. Appl Phys Lett 122(20):201103

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sincerely thank Kannur University for providing all the necessary facilities during the course of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Nissamudeen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veena, V.P., Mohan, N., Sruthi, T. et al. Green, affordable, and unprecedented photoluminescence investigation on white emission of Y2O3:Clitoria ternatea floral extract complex to replace conventional Dy3+ doping for wLED. Appl Nanosci (2024). https://doi.org/10.1007/s13204-024-03043-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13204-024-03043-0

Keywords

Navigation