Skip to main content
Log in

The study of copper oxide nanoparticles based on the pH varying during propolis-mediated synthesis: structure, optical properties, UV-block ability, and malachite green photodegradation

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

In third-world countries, the biosynthesis of multi-purpose copper oxide nanoparticles is a crucial solution for pollution, but studies on controlling their properties through internal structure are still limited. This work generated copper oxide nanoparticles (CONPs) using bee propolis as a reducing and capping agent, employing an ecologically benign, simple, inexpensive, and economical technique. The pH of this biosynthesis was varied (6.4, 7.8, 9.2, 10.4, and 11.7). The study computed various structural and optical parameters of biosynthesized CONP samples, revealing nonlinear changes with pH, including unit cell, Cu–O bond length, crystal size, microstrain, energy band gap, Urbach energy, and more. The current research has shown promising results in blocking ultraviolet rays effectively. The blocking parameters were calculated for CONPs samples, and it was found that the pH 8 sample had the best blocking capacity at both regions A and B (90.31 and 91.31%, respectively). The study effectively investigated CONPs’ potential as a catalyst for increasing dye photodegradation. The pH 6.4 sample showed the highest degradation rate (94.15%). The UV-blocking and photodegradation properties of the CONPs samples were explained using the structural and optical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper.

References

  • Abdelrazeg S, Hussin H, Salih M, Shaharuddin B (2020) Propolis composition and applications in medicine and health. Int Med J 25:1505–1542

    Google Scholar 

  • Akasha H, Ghaffarpasand O, Pope FD (2023) Climate change, air pollution and the associated burden of disease in the Arabian peninsula and neighbouring regions: a critical review of the literature. Sustainability 15:3766

    CAS  Google Scholar 

  • Akter J, Sapkota KP, Hanif MA et al (2021) Kinetically controlled selective synthesis of Cu2O and CuO nanoparticles toward enhanced degradation of methylene blue using ultraviolet and sun light. Mater Sci Semicond Process 123:105570

    CAS  Google Scholar 

  • Al-Fakeh MS, Osman S, Gassoumi M et al (2021a) Biosynthesis and characterization of Saudi propolis-mediated silver nanoparticles and their biological properties. Open Phys 19:753–757

    CAS  Google Scholar 

  • Al-Fakeh MS, Osman SOM, Gassoumi M et al (2021b) Characterization, antimicrobial and anticancer properties of palladium nanoparticles biosynthesized optimally using Saudi propolis. Nanomaterials 11:2666. https://doi.org/10.3390/nano11102666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alharbi SR, Qasrawi AF (2021) Effects of Au nanoslabs on the performance of CdO thin films designed for optoelectronic applications. Phys E Low Dimens Syst Nanostruct 125:114386

    CAS  Google Scholar 

  • Aliero YA, Bello UA, Salihu M, Ahmad AM (2022) Characterization of the structural and optical properties of copper oxide for use in solar cells using screen printing method. UMYU Sci 1:184–193

    Google Scholar 

  • Alizadeh-Sani M, Mohammadian E, Rhim J-W, Jafari SM (2020) pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. Trends Food Sci Technol 105:93–144

    CAS  Google Scholar 

  • Almuhayawi MS (2020) Propolis as a novel antibacterial agent. Saudi J Biol Sci 27:3079–3086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alqadi MK, Abo Noqtah OA, Alzoubi FY et al (2014) pH effect on the aggregation of silver nanoparticles synthesized by chemical reduction. Mater Sci 32:107–111

    CAS  Google Scholar 

  • Alqubati M, Osman SOM, Galil MSA et al (2023) Nonlinear effects of the biosynthesis temperature of ZnO nanoparticles on their structural, optical, and ultraviolet blocking parameters. J Opt 52:1–18. https://doi.org/10.1007/s12596-023-01394-5

  • Alsweefe H, Al-Hayali SK, Al-Janabi A (2018) Efficient humidity sensor based on an etched no-core fiber coated with copper oxide nanoparticles. J Nanophotonics 12:46018

    Google Scholar 

  • Alvear M, Santos E, Cabezas F et al (2021) Geographic area of collection determines the chemical composition and antimicrobial potential of three extracts of Chilean propolis. Plants 10:1543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amirsalari A, Shayesteh SF (2015) Effects of pH and calcination temperature on structural and optical properties of alumina nanoparticles. Superlattices Microstruct 82:507–524

    CAS  Google Scholar 

  • Amroun MN, Salim K, Kacha AH, Khadraoui M (2020) Effect of TM (TM = Sn, Mn, Al) doping on the physical properties of ZnO thin films grown by spray pyrolysis technique: a comparative study. Int J Thin Film Sci Tec 9:7–19

    Google Scholar 

  • Andrade Neto NF, Oliveira PM, Nascimento RM et al (2019) Influence of pH on the morphology and photocatalytic activity of CuO obtained by the sonochemical method using different surfactants. Ceram Int 45:651–658. https://doi.org/10.1016/j.ceramint.2018.09.224

    Article  CAS  Google Scholar 

  • Arandhara G, Bora J, Saikia PK (2020) Effect of pH on the crystallite size, elastic properties and morphology of nanostructured ZnS thin films prepared by chemical bath deposition technique. Mater Chem Phys 241:122277

    CAS  Google Scholar 

  • Aroob S, Carabineiro SAC, Taj MB et al (2023) Green synthesis and photocatalytic dye degradation activity of CuO nanoparticles. Catalysts 13:502

    CAS  Google Scholar 

  • Arunkumar B, Meenakshi R, Raja N, Meganathan T (2023) Optical Conductivity Analysis of Green CuO Nanoparticles Using Plant Leaf Extract. IOP Conf Ser Mater Sci Eng 1291:12025

    Google Scholar 

  • Atta S, Halder M, Bharti V, Meikap AK (2023) Impact of NiTbxFe2−XO4 nanofiller in PVDF matrix for the characterization of magnetic, dielectric properties and effectiveness of EMI shielding. J Mater Res 38:2474–2485

    CAS  Google Scholar 

  • Babu MH, Podder J (2021) Bond length controlling opto-structural properties of Mn doped CuO thin films: an experimental and theoretical study. Mater Sci Semicond Process 129:105798

    CAS  Google Scholar 

  • Badry R, El-Nahass MM, Nada N et al (2023a) Structural and UV-blocking properties of carboxymethyl cellulose sodium/CuO nanocomposite films. Sci Rep 13:1123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Badry R, El-Nahass MM, Nada N et al (2023b) UV filters and high refractive index materials based on carboxymethyl cellulose sodium and CuO@ZnO core/shell nanoparticles. Sci Rep 13:21159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barreda AI, Saiz JM, González F et al (2019) Recent advances in high refractive index dielectric nanoantennas: basics and applications. AIP Adv 9:040701

    Google Scholar 

  • Bitra HCR, Rao AV, Babu KS, Rao GN (2020) Synthesis and enhanced dielectric properties of copper oxidenanoparticles. Mater Chem Phys 254:123379

    Google Scholar 

  • Bokuniaeva AO, Vorokh AS (2019) Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder. J Phys Conf Ser 1410:12057

    CAS  Google Scholar 

  • Brodie G (2019) Energy transfer from electromagnetic fields to materials. Electromagn Fields Waves 1–18. https://doi.org/10.5772/intechopen.83420

  • Cadet J, Douki T (2018) Formation of UV-induced DNA damage contributing to skin cancer development. Photochem Photobiol Sci 17:1816–1841

    CAS  PubMed  Google Scholar 

  • Calos NJ, Forrester JS, Schaffer GB (1996) A crystallographic contribution to the mechanism of a mechanically induced solid state reaction. J Solid State Chem 122:273–280

    CAS  Google Scholar 

  • Dat NM, Nam NTH, An H et al (2023) Green synthesis of copper oxide nanoparticles for photodegradation of malachite green and antibacterial properties under visible light. Opt Mater 136:113489

    Google Scholar 

  • Dezmirean DS, Mărghitaş LA, Chirilă F et al (2017) Influence of geographic origin, plant source and polyphenolic substances on antimicrobial properties of propolis against human and honey bee pathogens. J Apic Res 56:588–597

    Google Scholar 

  • Duru IA (2020) Comparative phytochemical analysis of brown, green and red propolis from Umudike, Abia State Nigeria. Adv J Chem B 3:86–97

    Google Scholar 

  • EdDahmouny A, Sali A, EsSbai N et al (2022) The impact of hydrostatic pressure and temperature on the binding energy, linear, third-order nonlinear, and total optical absorption coefficients and refractive index changes of a hydrogenic donor impurity confined in GaAs/AlxGa1−x As double quantum dots. Eur Phys J plus 137:784

    CAS  Google Scholar 

  • El-Sawy AM, Salem MA, Salem IA et al (2023) Sonophotocatalytic degradation of malachite green in aqueous solution using six competitive metal oxides as a benchmark. Photochem Photobiol Sci 22:579–594

    CAS  PubMed  Google Scholar 

  • Farhadian S, Hashemi-Shahraki F, Asadpour S et al (2022) Malachite green, the hazardous materials that can bind to Apo-transferrin and change the iron transfer. Int J Biol Macromol 194:790–799

    CAS  PubMed  Google Scholar 

  • Fernando I, Zhou Y (2019) Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles. Chemosphere 216:297–305

    CAS  PubMed  Google Scholar 

  • Galil MSA, Osman SOM, Moharem ASS et al (2023) Optimal biosynthesis and characterization of broad-spectrum antibacterial cupric oxide nanoparticles using bee glue. Moroccan J Chem 11:11–14

    Google Scholar 

  • Ge M, Yuan W, Zhou L et al (2020) Intermediate structures of nucleation and growth during solidification of CuO constrained by graphene. Adv Mater Interfaces 7:1902047

    CAS  Google Scholar 

  • Gerus A, Boiko V, Ciaramitaro VC et al (2023) Controlling a defect structure of the ZnGa2O4: Cr3+ spinel through synthesis parameters for persistent luminescence optimization. Mater Res Bull 168:112473

    CAS  Google Scholar 

  • Ghorbani L, Nasirian S (2020) Zinc oxide nanorods assisted by polyaniline network as a flexible self-powered ultraviolet photodetector: a comprehensive study. Appl Surf Sci 527:146786

    CAS  Google Scholar 

  • Ghosh N, Sen S, Biswas G, et al (2021) Synthesis and characterization of CuO nanoparticles and CuO/PVA-PVP nanocomposites: adsorption activity for malachite green (MG) dye and antibacterial property in wastewater treatment. https://doi.org/10.21203/rs.3.rs-1089880/v1

  • Gnatenko YP, Bukivskij PM, Gamernyk RV et al (2023) Study of optical and photoelectric properties of copper oxide films. Mater Chem Phys 307:128175

    CAS  Google Scholar 

  • Goh EG, Xu X, McCormick PG (2014) Effect of particle size on the UV absorbance of zinc oxide nanoparticles. Scr Mater 78:49–52

    Google Scholar 

  • Gupta BG, Biswas JK, Agrawal KM (2017) Air pollution from bleaching and dyeing industries creating severe health hazards in Maheshtala textile cluster, West Bengal, India. Air Soil Water Res 10:1178622117720787

    Google Scholar 

  • Guzman M, Arcos M, Dille J et al (2021) Effect of the concentration and the type of dispersant on the synthesis of copper oxide nanoparticles and their potential antimicrobial applications. ACS Omega 6:18576–18590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haryński Ł, Olejnik A, Grochowska K, Siuzdak K (2022) A facile method for Tauc exponent and corresponding electronic transitions determination in semiconductors directly from UV–Vis spectroscopy data. Opt Mater 127:112205

    Google Scholar 

  • Herbst M, Hofmann E, Förster S (2019) Nucleation and growth kinetics of ZnO nanoparticles studied by in situ microfluidic SAXS/WAXS/UV–Vis experiments. Langmuir 35:11702–11709

    CAS  PubMed  Google Scholar 

  • Hortin JM, Anderson AJ, Britt DW et al (2020) Copper oxide nanoparticle dissolution at alkaline pH is controlled by dissolved organic matter: influence of soil-derived organic matter, wheat, bacteria, and nanoparticle coating. Environ Sci Nano 7:2618–2631

    CAS  Google Scholar 

  • Hwang S-W, Park J-H, Lee S-L et al (2020) Degradation characteristics of non-degradable dye in aqueous solution by ozonation. Korean J Environ Agric 39:58–64

    Google Scholar 

  • Jabbarzadeh A, Halfina B (2019) Unravelling the effects of size, volume fraction and shape of nanoparticle additives on crystallization of nanocomposite polymers. Nanoscale Adv 1:4704–4721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jawad AH, Abdulhameed AS, Wilson LD et al (2021) High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: optimization and mechanism study. Chinese J Chem Eng 32:281–290

    CAS  Google Scholar 

  • Jay Chithra M, Sathya M, Pushpanathan K (2015) Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method. Acta Metall Sin 28:394–404

    CAS  Google Scholar 

  • Jena SK, Sadasivam R, Packirisamy G, Saravanan P (2021) Nanoremediation: sunlight mediated dye degradation using electrospun PAN/CuO–ZnO nanofibrous composites. Environ Pollut 280:116964

    CAS  PubMed  Google Scholar 

  • Ju X, Bowden M, Brown EE, Zhang X (2015) An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydr Polym 123:476–481

    CAS  PubMed  Google Scholar 

  • Kafi Ahmadi L, Khademinia S (2022) Fabrication, characterization, and photocatalytic degradation of malachite green by CuO nanocatalyst. Prog Phys Appl Mater 2:83–92

    Google Scholar 

  • Kalita C, Karmakar S (2018) Analysis of structural and optical features of CuO nanoparticles synthesized at different molarities. Int J Sci Res Phys Appl Sci 6:2348–3423

    Google Scholar 

  • Kim KJ, Han H, Defferriere T et al (2019) Facet-dependent in situ growth of nanoparticles in epitaxial thin films: the role of interfacial energy. J Am Chem Soc 141:7509–7517

    CAS  PubMed  Google Scholar 

  • Kumar A, Rout L, Achary L et al (2016) Design of binary SnO2-CuO nanocomposite for efficient photocatalytic degradation of malachite green dye. AIP Conf Proc 1724:20027

    Google Scholar 

  • Liu W, McLeod E (2019) Accuracy of the skin depth correction for metallic nanoparticle polarizability. J Phys Chem C 123:13009–13014

    CAS  Google Scholar 

  • Magyari K, Pap Z, Tóth Z-R et al (2019) The impact of copper oxide nanoparticles on the structure and applicability of bioactive glasses. J Sol Gel Sci Technol 91:634–643

    CAS  Google Scholar 

  • Maheshwari K, Agrawal M, Gupta AB (2021) Dye pollution in water and wastewater. Nov Mater Dye Wastewater Treat 1–25. https://doi.org/10.1007/978-981-16-2892-4_1

  • Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E (2020) Environmental and health impacts of air pollution: a review. Front Public Heal 8:14

    Google Scholar 

  • Manju VV, Divakara S, Karthik D, Somashekar R (2020) Crystallite shape, dielectric constant and functional data analysis of various cotton fibres using WAXS data. Indian J Fibre Text Res 45:49–56

    CAS  Google Scholar 

  • Manju VV, Divakara S, Narayan Hegde V, Somashekar R (2022) Structural and elastic properties of varieties of cotton fibers. Adv Mater Process Technol 8:3990–4006

    Google Scholar 

  • Modwi A, Taha KK, Khezami L et al (2019) Silver decorated Cu/ZnO photocomposite: efficient green degradation of malachite. J Mater Sci Mater Electron 30:3629–3638

    CAS  Google Scholar 

  • Mohamed AMY (2016) Photodegradation of malachite green molecules using CuO photocatalyst

  • Mohamed Saadon NAF, Taib NI, Loy CW, Mohamed Z (2023) Role of Ca2+ doping on the enhancement of dielectric properties of Sr2–xCaxNiWO6 for energy storage device application. Sci Rep 13:1246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed SO, El-Naggar K, Khalil MMH (2022) Green synthesis of silver nanoparticles using Egyptian propolis extract and its antimicrobial activity. Egypt J Chem 65:5–6

    Google Scholar 

  • Mohammed SO, Alhakimi AN (2022) Waterborne pathogens treatment using biosynthesized silver-mordenite nanocomposites in aqueous propolis extracts: characterization and antibacterial activity. Appl Organomet Chem 36:e6892

    CAS  Google Scholar 

  • Mondal S (2022) Nanomaterials for UV protective textiles. J Ind Text 51:5592S-5621S

    CAS  Google Scholar 

  • Muhammad A, Hassan Z, Mohammad SM et al (2022) Realization of UV-C absorption in ZnO nanostructures using fluorine and silver co-doping. Colloid Interface Sci Commun 47:100588. https://doi.org/10.1016/j.colcom.2022.100588

    Article  CAS  Google Scholar 

  • Muralikrishna IV, Manickam V (2017) Introduction. In: Muralikrishna IV, Manickam V (eds) Environmental management: science and engineering for industry. Butterworth-Heinemann, Oxford, pp 1–4

    Google Scholar 

  • Nandi P, Das D (2019) Photocatalytic degradation of Rhodamine-B dye by stable ZnO nanostructures with different calcination temperature induced defects. Appl Surf Sci 465:546–556

    CAS  Google Scholar 

  • Nandisha PS (2023) Bio-mediated synthesis of CuO nano bundles from gomutra (cow urine): synthesis, characterization, photodegradation of the malachite green dye and SBH mediated reduction of 4-nitrophenol. Mater Sci Eng B 295:116607

    CAS  Google Scholar 

  • Nayak R, Ali FA, Mishra DK et al (2020) Fabrication of CuO nanoparticle: an efficient catalyst utilized for sensing and degradation of phenol. J Mater Res Technol 9:11045–11059

    CAS  Google Scholar 

  • Neale RE, Lucas RM, Byrne SN et al (2023) The effects of exposure to solar radiation on human health. Photochem Photobiol Sci 22(5):1011–1047

    CAS  PubMed  Google Scholar 

  • Neira M, Erguler K, Ahmady-Birgani H et al (2023) Climate change and human health in the Eastern Mediterranean and Middle East: literature review, research priorities and policy suggestions. Environ Res 216:114537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson R, Liu N-A (2020) Nuclear DNA damages generated by reactive oxygen molecules (ROS) under oxidative stress and their relevance to human cancers, including ionizing radiation-induced neoplasia part I: physical, chemical and molecular biology aspects. Radiat Med Prot 1:140–152

    Google Scholar 

  • Nishat Y, Danish M, Siddiqui N, Hussain T (2022) Removal of emerging pollutants from the environment through microbes. In: Samuel J, Kumar A, Singh J (eds) Relationship between microbes and the environment for sustainable ecosystem services, vol 2. Elsevier, Amsterdam, pp 181–203

    Google Scholar 

  • Oladoye PO, Ajiboye TO, Omotola EO, Oyewola OJ (2022) Methylene blue dye: toxicity and potential technologies for elimination from (waste) water. Results Eng 16:100678

    CAS  Google Scholar 

  • Olson E, Li Y, Lin F-Y et al (2019) Thin biobased transparent UV-blocking coating enabled by nanoparticle self-assembly. ACS Appl Mater Interfaces 11:24552–24559

    CAS  PubMed  Google Scholar 

  • Osman MS, Al-qubati M, Saeed M et al (2022) Effective inhibition of waterborne and fungal pathogens using ZnO nanoparticles prepared from an aqueous extract of propolis: optimum biosynthesis, characterization, and antimicrobial activity. Appl Nanosci 13:4515–4526

    Google Scholar 

  • Ożarowski M, Karpiński TM (2023) The effects of propolis on viral respiratory diseases. Molecules 28:359

    PubMed  PubMed Central  Google Scholar 

  • Radhakrishnan A, Rejani P, Beena B (2018) CuO nano structures as an ecofriendly nano photo catalyst and antimicrobial agent for environmental remediation. Int J Nano Dimens 9:145–157

    CAS  Google Scholar 

  • Rai PK, Chutia BM (2016) Particulate matter bio-monitoring through magnetic properties of an Indo-Burma hotspot region. Chem Ecol 32:550–574

    CAS  Google Scholar 

  • Rao BN, Rao PT, Basha SE et al (2023) Exploring the optical and biological aspects of sodium-doped CuO nanoparticles. Mater Chem Phys 308:128174

    Google Scholar 

  • Raut VS, Lokhande CD, Killedar VV (2017) Studies on effect of pH on structural, optical and morphological properties of chemisynthesized CdSe grains. Int J Eng 10:2017

    Google Scholar 

  • Reddy S, Osborne WJ (2022) Effect of pollution on sediments and their impact on the aquatic ecosystem. In: Samuel J, Kumar A, Singh J (eds) Relationship between microbes and the environment for sustainable ecosystem services, vol 2. Elsevier, Amsterdam, pp 1–16

    Google Scholar 

  • Rehman S, Shad NA, Sajid MM et al (2022) Tuning structural and optical properties of copper oxide nanomaterials by thermal heating and its effect on photocatalytic degradation of congo red dye. Iran J Chem Chem Eng 41:1549–1560

    CAS  Google Scholar 

  • Renuga D, Jeyasundari J, Athithan ASS, Jacob YBA (2020) Synthesis and characterization of copper oxide nanoparticles using Brassica oleracea var. italic extract for its antifungal application. Mater Res Express 7:45007

    CAS  Google Scholar 

  • Rini AS (2019) Diffraction pattern simulation of crystal structure towards the ionic radius changes via vesta program. J Technomaterial Phys 1:132–139

    Google Scholar 

  • Roy S, Rhim J-W (2019) Melanin-mediated synthesis of copper oxide nanoparticles and preparation of functional Agar/CuO NP nanocomposite films. J Nanomater 2019:2840517. https://doi.org/10.1155/2019/2840517

    Article  CAS  Google Scholar 

  • Sanjeevappa HK, Nilogal P, Rayaraddy R et al (2022) Biosynthesized unmodified silver nanoparticles: a colorimetric optical sensor for detection of Hg2+ ions in aqueous solution. Results Chem 4:100507

    CAS  Google Scholar 

  • Selleswari D, Meena P, Mangalaraj D (2019) Design of CuO/SnO2 heterojunction photocatalyst with enhanced UV light-driven photocatalytic activity on congo-red and malachite green dyes. J Iran Chem Soc 16:1291–1300

    CAS  Google Scholar 

  • Sharma H (2022) Environmental pollution: a great hazard in the survival of man. Cent Asian J Med Nat Sci 3:184–193

    Google Scholar 

  • Shubharani R, Mahesh M, Yogananda Murthy V (2019) Biosynthesis and characterization, antioxidant and antimicrobial activities of selenium nanoparticles from ethanol extract of Bee Propolis. J Nanomed Nanotechnol 10:1–7

    Google Scholar 

  • Singh HK, Kumar S, Bamne J et al (2021) Analyzing the synthesis of various inorganic nanoparticles and their role in UV-shielding. Mater Today Proc 46:5607–5618

    CAS  Google Scholar 

  • Song X, Zhang L, Cao Y et al (2020) Effect of pH and temperatures on the fast precipitation vaterite particle size and polymorph stability without additives by steamed ammonia liquid waste. Powder Technol 374:263–273

    CAS  Google Scholar 

  • Suárez-López R, Puntes VF, Bastús NG et al (2022) Nucleation and growth of gold nanoparticles in the presence of different surfactants. A dissipative particle dynamics study. Sci Rep 12:13926

    PubMed  PubMed Central  Google Scholar 

  • Suresh S (2014) Studies on the dielectric properties of CdS nanoparticles. Appl Nanosci 4:325–329

    CAS  Google Scholar 

  • Tahmasebi E, Mohammadi M, Yazdanian M et al (2023) Antimicrobial properties of green synthesized novel TiO2 nanoparticles using Iranian propolis extracts. J Basic Microbiol 63:1030–1048

    CAS  PubMed  Google Scholar 

  • Taran M, Safaei M, Karimi N, Almasi A (2021) Benefits and application of nanotechnology in environmental science: an overview. Biointerface Res Appl Chem 11:7860–7870

    CAS  Google Scholar 

  • Thanh NTK, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114:7610–7630

    CAS  PubMed  Google Scholar 

  • Thumoju S, Mohan V (2018) Epigenetic-processes driven disorders and therapeutics. In: Tollefsbol TO (ed) Epigenetics in human disease. Elsevier, Amsterdam, pp 551–572

    Google Scholar 

  • Wahab R, Khan F, Ahmad N et al (2020) Rapid sensing response for phenol with CuO nanoparticles. Colloids Surfaces A Physicochem Eng Asp 607:125424

    CAS  Google Scholar 

  • Wang H, Zhu X, Zakari S et al (2022) Assessing the effects of plant roots on soil water infiltration using dyes and hydrus-1D. Forests 13:1095

    Google Scholar 

  • Wang Y (2015) Controllable growth, microstructure and electronic structure of copper oxide thin films

  • Weldegebrieal GK (2020) Photocatalytic and antibacterial activityof CuO nanoparticles biosynthesized using Verbascum thapsus leaves extract. Optik 204:164230. https://doi.org/10.1016/j.ijleo.2020.164230

    Article  CAS  Google Scholar 

  • Welegergs GG, Gebretinsae HG, Tsegay MG et al (2023) Spectrally selective single layered Ag@CuO nanocermet coatings for photothermal application: green synthesis method. Opt Mater 135:113247

    CAS  Google Scholar 

  • Yadav J, Qanungo K (2023) A review: on malachite green; synthesis, uses and toxic effects. AIP Conf Proc 2535:30020

    CAS  Google Scholar 

  • Yadav N, Garg VK, Chhillar AK, Rana JS (2021) Detection and remediation of pollutants to maintain ecosustainability employing nanotechnology: a review. Chemosphere 280:130792

    CAS  PubMed  Google Scholar 

  • Yang J, Pi A, Yan L et al (2022) Research progress on therapeutic effect and mechanism of propolis on wound healing. Evid Based Complement Altern Med 2022:5798941

    Google Scholar 

  • Zhang L, Jiang W, Ai W et al (2018) Ion irradiation induced nucleation and growth of nanoparticles in amorphous silicon carbide at elevated temperatures. J Nucl Mater 505:249–254

    CAS  Google Scholar 

  • Zhou J, Yang Y, Yang Y et al (2019a) Observing crystal nucleation in four dimensions using atomic electron tomography. Nature 570:500–503

    CAS  PubMed  Google Scholar 

  • Zhou L, Wang S, Xu D, Guo Y (2014) Impact of mixing for the production of CuO nanoparticles in supercritical hydrothermal synthesis. Ind Eng Chem Res 53:481–493

    CAS  Google Scholar 

  • Zhou X, Zhang J, Pan Z, Li D (2019b) Review of methods for the detection and determination of malachite green and leuco-malachite green in aquaculture. Crit Rev Anal Chem 49:1–20

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under grant number RGP 2/191/44.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Osman Mohammed.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors, Mohammad N. Murshed and Mohamed E. El Sayed, have received research funding from King Khalid University, Saudi Arabia. The other authors are members of Aljanad University for Science and Technology, Taiz, Yemen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murshed, M.N., Galil, M.S.A., Mohammed, S.O. et al. The study of copper oxide nanoparticles based on the pH varying during propolis-mediated synthesis: structure, optical properties, UV-block ability, and malachite green photodegradation. Appl Nanosci 14, 585–602 (2024). https://doi.org/10.1007/s13204-024-03035-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-024-03035-0

Keywords

Navigation