Skip to main content
Log in

Effect of hydrous manganese oxide (HMO) functional groups on oily wastewater treatment

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The innovative exploitation of diverse inorganic materials in environmental applications has received great scientific attention as a result of the rapid growth of nanotechnology and the expanding variety of nanomaterials currently being produced and developed. The idea of developing multifunctional nanocomposite membranes that can do more than just separate things has been made possible using inorganic nanoparticles as fillers in polymeric matrix. In this work, the nanocomposite was utilized to separate an oil/water emulsion. With the intention of enhancing the capabilities of PVDF-based membrane for oil/water emulsion filtration, synthesized hydrous manganese oxide (HMO) nanoparticles were mixed with poly(vinylidene fluoride) (PVDF) polymer to form mixed matrix membrane (MMM). With the addition of HMO nanoparticles, the MMM showed that the membrane wetting properties, hydrophilicity and oleophobicity, were greatly improved owing to the high amount of –OH functional groups. Subsequently, the improved surface hydrophilicity leads to greater water flux of PVDF/HMO MMM (402.0 ± 11.75 L/m2 h; oil rejection efficiency = 93.8%) in comparison to pristine PVDF membrane (42.4 ± 3.73 L/m2 h; oil rejection efficiency = 96.2%). Furthermore, compared to pristine PVDF membrane, the flux recovery rate (FRR) and reversible fouling (Rr) of the MMM were increased by two–three times, while the irreversible fouling (Rir) was reduced by half. This demonstrates that the HMO nanoparticles in the nanocomposite improved the water affinity and reduced low possibility of fouling problem. Hence, the modified nanocomposite membrane can be applied in oily wastewater treatment and competed with the current technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data reported in this article are available.

References

  • Abuhasel K, Kchaou M, Alquraish M, Munusamy Y, Jeng YT (2021) Oily wastewater treatment: overview of conventional and modern methods, challenges, and future opportunities. Water 13:980

    Article  CAS  Google Scholar 

  • Adetunji AI, Olaniran AO (2021) Treatment of industrial oily wastewater by advanced technologies: a review. Appl Water Sci 11:98. https://doi.org/10.1007/s13201-021-01430-4

    Article  CAS  Google Scholar 

  • Ahmad T, Guria C, Mandal A (2018) Synthesis, characterization and performance studies of mixed-matrix poly (vinyl chloride)-bentonite ultrafiltration membrane for the treatment of saline oily wastewater. Process Saf Environ Prot 116:703–717

    Article  CAS  Google Scholar 

  • Ao C et al (2017) Superhydrophilic graphene oxide@electrospun cellulose nanofiber hybrid membrane for high-efficiency oil/water separation. Carbohyd Polym 175:216–222. https://doi.org/10.1016/j.carbpol.2017.07.085

    Article  CAS  Google Scholar 

  • Asad A, Rastgar M, Sameoto D, Sadrzadeh M (2021) Gravity assisted super high flux microfiltration polyamide-imide membranes for oil/water emulsion separation. J Membr Sci 621:119019. https://doi.org/10.1016/j.memsci.2020.119019

    Article  CAS  Google Scholar 

  • Awad ES, Sabirova TM, Tretyakova NA, Alsalhy QF, Figoli A, Salih IK (2021) A mini-review of enhancing ultrafiltration membranes (UF) for wastewater treatment: performance and stability. ChemEngineering 5:34

    Article  CAS  Google Scholar 

  • Bengani-Lutz P, Zaf RD, Culfaz-Emecen PZ, Asatekin A (2017) Extremely fouling resistant zwitterionic copolymer membranes with ~ 1nm pore size for treating municipal, oily and textile wastewater streams. J Membr Sci 543:184–194. https://doi.org/10.1016/j.memsci.2017.08.058

    Article  CAS  Google Scholar 

  • Boccaccio T, Bottino A, Capannelli G, Piaggio P (2002) Characterization of PVDF membranes by vibrational spectroscopy. J Membr Sci 210:315–329. https://doi.org/10.1016/S0376-7388(02)00407-6

    Article  CAS  Google Scholar 

  • Chen F, Shi X, Chen X, Chen W (2018) An iron (II) phthalocyanine/poly(vinylidene fluoride) composite membrane with antifouling property and catalytic self-cleaning function for high-efficiency oil/water separation. J Membr Sci 552:295–304. https://doi.org/10.1016/j.memsci.2018.02.030

    Article  CAS  Google Scholar 

  • Chen S et al (2021) Dual-functional superwettable nano-structured membrane: from ultra-effective separation of oil-water emulsion to seawater desalination. Chem Eng J 411:128042

    Article  CAS  Google Scholar 

  • Corti-Monzón G, Nisenbaum M, Villegas-Plazas M, Junca H, Murialdo S (2020) Enrichment and characterization of a bilge microbial consortium with oil in water-emulsions breaking ability for oily wastewater treatment. Biodegradation 31:57–72. https://doi.org/10.1007/s10532-020-09894-y

    Article  CAS  Google Scholar 

  • De Guzman MR et al (2021) Increased performance and antifouling of mixed-matrix membranes of cellulose acetate with hydrophilic nanoparticles of polydopamine-sulfobetaine methacrylate for oil-water separation. J Membr Sci 620:118881. https://doi.org/10.1016/j.memsci.2020.118881

    Article  CAS  Google Scholar 

  • Delavar M, Bakeri G, Hosseini M (2017) Fabrication of polycarbonate mixed matrix membranes containing hydrous manganese oxide and alumina nanoparticles for heavy metal decontamination: characterization and comparative study. Chem Eng Res Des 120:240–253

    Article  CAS  Google Scholar 

  • Deng Y, Zhang G, Bai R, Shen S, Zhou X, Wyman I (2019) Fabrication of superhydrophilic and underwater superoleophobic membranes via an in situ crosslinking blend strategy for highly efficient oil/water emulsion separation. J Membr Sci 569:60–70. https://doi.org/10.1016/j.memsci.2018.09.069

    Article  CAS  Google Scholar 

  • Ghorbani M, Vakili MH, Ameri E (2021) Fabrication and evaluation of a biopolymer-based nanocomposite membrane for oily wastewater treatment. Mater Today Commun 28:102560

    Article  CAS  Google Scholar 

  • Gohari RJ, Halakoo E, Nazri N, Lau W, Matsuura T, Ismail A (2014) Improving performance and antifouling capability of PES UF membranes via blending with highly hydrophilic hydrous manganese dioxide nanoparticles. Desalination 335:87–95

    Article  Google Scholar 

  • Granados Correa F, Jiménez-Becerril J (2004) Adsorption of 60Co2+ on hydrous manganese oxide powder from aqueous solution. Radiochim Acta 92:105–110. https://doi.org/10.1524/ract.92.2.105.27459

    Article  Google Scholar 

  • Guo Z-Y, Yuan X-S, Geng H-Z, Wang L-D, Jing L-C, Gu Z-Z (2018) High conductive PPy–CNT surface-modified PES membrane with anti-fouling property. Appl Nanosci 8:1597–1606. https://doi.org/10.1007/s13204-018-0826-5

    Article  CAS  Google Scholar 

  • Han L, Tan YZ, Xu C, Xiao T, Trinh TA, Chew JW (2019) Zwitterionic grafting of sulfobetaine methacrylate (SBMA) on hydrophobic PVDF membranes for enhanced anti-fouling and anti-wetting in the membrane distillation of oil emulsions. J Membr Sci 588:117196. https://doi.org/10.1016/j.memsci.2019.117196

    Article  CAS  Google Scholar 

  • Hegab HM et al (2022) Designing of amino silica covalently functionalized carboxylic multi-wall carbon nanotubes-based polyethersulfone membranes for enhancing oily wastewater treatment. J Environ Chem Eng 10:108667. https://doi.org/10.1016/j.jece.2022.108667

    Article  CAS  Google Scholar 

  • Huang S, Ras RHA, Tian X (2018) Antifouling membranes for oily wastewater treatment: Interplay between wetting and membrane fouling. Curr Opin Colloid Interface Sci 36:90–109. https://doi.org/10.1016/j.cocis.2018.02.002

    Article  CAS  Google Scholar 

  • Ismail N et al (2019) PVDF/HMO ultrafiltration membrane for efficient oil/water separation. Chem Eng Commun 208:463–473

    Article  Google Scholar 

  • Ismail N et al (2020a) Fabrication of PVDF/HMO mixed matrix membrane: effect of HMO loading on oil/water separation. In: IOP conference series: materials science and engineering. IOP Publishing, 052004

  • Ismail NH et al (2020b) Hydrophilic polymer-based membrane for oily wastewater treatment: a review. Sep Purif Technol 233:116007. https://doi.org/10.1016/j.seppur.2019.116007

    Article  CAS  Google Scholar 

  • Ismail NH, Salleh WNW, Ahmad SZN, Ismail AF (2021) Effect of various operating parameters towards PVDF/HMO mixed matrix membrane performance. J Environ Chem Eng 9:105667. https://doi.org/10.1016/j.jece.2021.105667

    Article  CAS  Google Scholar 

  • Kundu P, Mishra IM (2018) Treatment and reclamation of hydrocarbon-bearing oily wastewater as a hazardous pollutant by different processes and technologies: a state-of-the-art review. Rev Chem Eng 35:73–108

    Article  Google Scholar 

  • Lai G et al (2017) Novel mixed matrix membranes incorporated with dual-nanofillers for enhanced oil-water separation. Sep Purif Technol 178:113–121

    Article  CAS  Google Scholar 

  • Li J-H, Ni X-X, Zhang D-B, Zheng H, Wang J-B, Zhang Q-Q (2018) Engineering a self-driven PVDF/PDA hybrid membranes based on membrane micro-reactor effect to achieve super-hydrophilicity, excellent antifouling properties and hemocompatibility. Appl Surf Sci 444:672–690

    Article  CAS  Google Scholar 

  • Liu Z, Cao R, Wei A, Zhao J, He J (2019) Superflexible/superhydrophilic PVDF-HFP/CuO-nanosheet nanofibrous membrane for efficient microfiltration. Appl Nanosci 9:1991–2000. https://doi.org/10.1007/s13204-019-01014-4

    Article  CAS  Google Scholar 

  • Matindi CN et al (2021) Tailoring the morphology of polyethersulfone/sulfonated polysulfone ultrafiltration membranes for highly efficient separation of oil-in-water emulsions using TiO2 nanoparticles. J Membr Sci 620:118868. https://doi.org/10.1016/j.memsci.2020.118868

    Article  CAS  Google Scholar 

  • Mazumder A, Chowdhury Z, Sen D, Bhattacharjee C (2020) Electric field assisted membrane separation for oily wastewater with a novel and cost-effective electrocoagulation and electroflotation enhanced membrane module (ECEFMM). Chem Eng Process Process Intensif 151:107918. https://doi.org/10.1016/j.cep.2020.107918

    Article  CAS  Google Scholar 

  • Nawi NIM et al (2021) polyvinylidene fluoride membrane via vapour induced phase separation for oil/water emulsion filtration. Polymers 13:427

    Article  CAS  Google Scholar 

  • Nnadiekwe CC et al (2021) Enhanced filtration characteristics and reduced bacterial attachment for reverse osmosis membranes modified by a facile method. ACS ES&T Water 1:1136–1144. https://doi.org/10.1021/acsestwater.0c00168

    Article  CAS  Google Scholar 

  • Otitoju T, Ahmad A, Ooi B (2016) Polyvinylidene fluoride (PVDF) membrane for oil rejection from oily wastewater: a performance review. J Water Process Eng 14:41–59

    Article  Google Scholar 

  • Pandele A et al (2018) Cellulose acetate membranes functionalized with resveratrol by covalent immobilization for improved osseointegration. Appl Surf Sci 438:2–13

    Article  CAS  Google Scholar 

  • Parida KM, Kanungo SB, Sant BR (1981) Studies on MnO2—I. Chemical composition, microstructure and other characteristics of some synthetic MnO2 of various crystalline modifications. Electrochim Acta 26:435–443. https://doi.org/10.1016/0013-4686(81)85033-5

    Article  CAS  Google Scholar 

  • Rabiee H, Farahani MHDA, Vatanpour V (2014) Preparation and characterization of emulsion poly (vinyl chloride)(EPVC)/TiO2 nanocomposite ultrafiltration membrane. J Membr Sci 472:185–193

    Article  CAS  Google Scholar 

  • Saini B, Sinha MK, Dash SK (2019) Mitigation of HA, BSA and oil/water emulsion fouling of PVDF Ultrafiltration Membranes by SiO2-g-PEGMA nanoparticles. J Water Process Eng 30:100603. https://doi.org/10.1016/j.jwpe.2018.03.018

    Article  Google Scholar 

  • Salimi A, Yousefi AA (2003) Analysis Method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym Testing 22:699–704. https://doi.org/10.1016/S0142-9418(03)00003-5

    Article  CAS  Google Scholar 

  • Shen X et al (2021) Surface PEGylation of polyacrylonitrile membrane via thiol-ene click chemistry for efficient separation of oil-in-water emulsions. Sep Purif Technol 255:117418

    Article  CAS  Google Scholar 

  • Singh H, Jain A, Kaur J, Arya SK, Khatri M (2020) Adsorptive removal of oil from water using SPIONs–chitosan nanocomposite: kinetics and process optimization. Appl Nanosci 10:1281–1295. https://doi.org/10.1007/s13204-019-01195-y

    Article  CAS  Google Scholar 

  • Sliesarenko V, Tomina V, Dudarko O, Bauman M, Lobnik A, Melnyk I (2020) Functionalization of polymeric membranes with phosphonic and thiol groups for water purification from heavy metal ions. Appl Nanosci 10:337–346. https://doi.org/10.1007/s13204-019-01170-7

    Article  CAS  Google Scholar 

  • Sultana N, Rahman R (2022) Electrospun nanofiber composite membranes based on cellulose acetate/nano-zeolite for the removal of oil from oily wastewater. Emergent Mater 5:145–153. https://doi.org/10.1007/s42247-021-00326-y

    Article  CAS  Google Scholar 

  • Tanis-Kanbur MB, Velioğlu S, Tanudjaja HJ, Hu X, Chew JW (2018) Understanding membrane fouling by oil-in-water emulsion via experiments and molecular dynamics simulations. J Membr Sci 566:140–150. https://doi.org/10.1016/j.memsci.2018.08.067

    Article  CAS  Google Scholar 

  • Tummons EN, Chew JW, Fane AG, Tarabara VV (2017) Ultrafiltration of saline oil-in-water emulsions stabilized by an anionic surfactant: effect of surfactant concentration and divalent counterions. J Membr Sci 537:384–395. https://doi.org/10.1016/j.memsci.2017.05.012

    Article  CAS  Google Scholar 

  • Tummons E, Han Q, Tanudjaja HJ, Hejase CA, Chew JW, Tarabara VV (2020) Membrane fouling by emulsified oil: a review. Sep Purif Technol 248:116919. https://doi.org/10.1016/j.seppur.2020.116919

    Article  CAS  Google Scholar 

  • Ullah A, Tanudjaja HJ, Ouda M, Hasan SW, Chew JW (2021) Membrane fouling mitigation techniques for oily wastewater: a short review. J Water Process Eng 43:102293. https://doi.org/10.1016/j.jwpe.2021.102293

    Article  Google Scholar 

  • Vetrivel S, Rana D, Sri Abirami Saraswathi MS, Divya K, Kaleekkal NJ, Nagendran A (2019) Cellulose acetate nanocomposite ultrafiltration membranes tailored with hydrous manganese dioxide nanoparticles for water treatment applications. Polym Adv Technol 30:1943–1950

    Article  CAS  Google Scholar 

  • Wan S et al (2014) Selective capture of thallium(I) ion from aqueous solutions by amorphous hydrous manganese dioxide. Chem Eng J 239:200–206. https://doi.org/10.1016/j.cej.2013.11.010

    Article  CAS  Google Scholar 

  • Wang Z, Jin J, Hou D, Lin S (2016) Tailoring surface charge and wetting property for robust oil-fouling mitigation in membrane distillation. J Membr Sci 516:113–122

    Article  CAS  Google Scholar 

  • Wang J, Wu Y, Cao Y, Li G, Liao Y (2020) Influence of surface roughness on contact angle hysteresis and spreading work. Colloid Polym Sci 298:1107–1112

    Article  CAS  Google Scholar 

  • Yong M, Zhang Y, Sun S, Liu W (2019) Properties of polyvinyl chloride (PVC) ultrafiltration membrane improved by lignin: hydrophilicity and antifouling. J Membr Sci 575:50–59

    Article  CAS  Google Scholar 

  • Zarghami S, Mohammadi T, Sadrzadeh M (2019) Preparation, characterization and fouling analysis of in-air hydrophilic/underwater oleophobic bio-inspired polydopamine coated PES membranes for oily wastewater treatment. J Membr Sci 582:402–413. https://doi.org/10.1016/j.memsci.2019.04.020

    Article  CAS  Google Scholar 

  • Zhan Y et al (2021) Fabrication of durable super-hydrophilic/underwater super-oleophobic poly(arylene ether nitrile) composite membrane via biomimetic co-deposition for multi-component oily wastewater separation in harsh environments. Colloids Surf A Physicochem Eng Aspects 624:126754. https://doi.org/10.1016/j.colsurfa.2021.126754

    Article  CAS  Google Scholar 

  • Zhang N et al (2022) A review on oil/water emulsion separation membrane material. J Environ Chem Eng 10:107257. https://doi.org/10.1016/j.jece.2022.107257

    Article  CAS  Google Scholar 

  • Zhou L et al (2019) One-pot route to synthesize HNTs@ PVDF membrane for rapid and effective separation of emulsion-oil and dyes from waste water. J Hazard Mater 380:120865

    Article  CAS  Google Scholar 

  • Zhu Q, Li Z (2015) Hydrogel-supported nanosized hydrous manganese dioxide: synthesis, characterization, and adsorption behavior study for Pb2+, Cu2+, Cd2+ and Ni2+ removal from water. Chem Eng J 281:69–80

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Education and Universiti Teknologi Malaysia for the financial support provided under Fundamental Research Grant Scheme Fundamental Research Grant Scheme (FRGS/1/2020/STG05/UTM/02/1, VOT NO. 5F369) and UTM High Impact Research Grant (Project Number: Q.J130000.2451.08G36) in completing this work. Nor Hafiza Ismail would like to acknowledge the support from Universiti Teknologi Malaysia for the ZAMALAH scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Norharyati Wan Salleh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, N.H., Wan Salleh, W.N., Hasbullah, H. et al. Effect of hydrous manganese oxide (HMO) functional groups on oily wastewater treatment. Appl Nanosci 13, 4207–4218 (2023). https://doi.org/10.1007/s13204-023-02852-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-023-02852-z

Keywords

Navigation