Skip to main content
Log in

On the role of random bond in spin-crossover compounds

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The short-range Ising-like model of spin-crossover solid compounds with Gaussian random bonds has been investigated by intensive numerical Monte Carlo simulation. Direct numerical computation are studied and analyzed. Three magnitudes of this system are examined: the fictitious magnetization, the total spin overlap, and the link overlap. In the general case, six representative results depending on the relation between the intermolecular coupling and the standard deviation are discussed. We shed light on the role of random intermolecular bonds in spin-crossover solid compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bertoni R, Lorenc M, Cailleau H, Tissot A, Laisney J, Boillot ML, Stoleriu L, Stancu A, Enachescu C, Collet E (2016) Elastically driven cooperative response of a molecular material impacted by a laser pulse. Nat Mater 15:606–610

    Article  CAS  Google Scholar 

  • Binder K, Young AP (1986) Spin glasses: experimental facts, theoretical concepts, and open questions. Rev Mod Phys 58(4):801

    Article  CAS  Google Scholar 

  • Boukheddaden K, Shteto K, Hôo B, Varret F (2000) Dynamical model for spin-crossover solids. I. Relaxation effects in the mean-field approach. Phys Rev B 62(22):14796

    Article  CAS  Google Scholar 

  • Boukheddaden K, Ritti MH, Bouchez G, Sy M, Dîrtu MM, Parlier M, Linares J, Garcia Y (2018) Quantitative contact pressure sensor based on spin crossover mechanism for civil security applications. J Phys Chem C 122(14):7597

    Article  CAS  Google Scholar 

  • Bousseksou A, Nasser J, Linares J, Boukheddaden K, Varret F (1992) Ising-like model for the two-step spin-crossover. J Phys I 2(7):1381

    CAS  Google Scholar 

  • Collet E, Guionneau P (2018) Structural analysis of spin-crossover materials: from molecules to materials. C R Chim 21(12):1133

    Article  CAS  Google Scholar 

  • Cruddas J, Powell B (2021) Multiple coulomb phases with temperature-tunable ice rules in pyrochlore spin-crossover materials. Phys Rev B 104(2):024433

    Article  CAS  Google Scholar 

  • Edwards SF, Anderson PW (1975) Theory of spin glasses. J Phys F Metal Phys 5(5):965

    Article  Google Scholar 

  • Ekanayaka TK, Kurz H, Dale AS, Hao G, Mosey A, Mishra E, Cheng R, Weber B, Dowben PA et al (2021) Probing the unpaired Fe spins across the spin crossover of a coordination polymer. Mater Adv 2(2):760

    Article  CAS  Google Scholar 

  • Enachescu C, Tanasa R, Stancu A, Tissot A, Laisney J, Boillot ML (2016) Matrix-assisted relaxation in Fe (phen) 2 (NCS) 2 spin-crossover microparticles, experimental and theoretical investigations. Appl Phys Lett 109(3):031908

    Article  Google Scholar 

  • Enriquez-Cabrera A, Rapakousiou A, Bello MP, Molnár G, Salmon L, Bousseksou A (2020) Spin crossover polymer composites, polymers and related soft materials. Coord Chem Rev 419:213396

    Article  CAS  Google Scholar 

  • Erichsen R Jr, Silveira A, Magalhaes S (2021) Ising spin glass in a random network with a Gaussian random field. Phys Rev E 103(2):022133

    Article  CAS  Google Scholar 

  • Gudyma A, Gudyma Iu (2021a) 1d spin-crossover molecular chain with degenerate states. J Appl Phys 129(12):123905. https://doi.org/10.1063/5.0042465

    Article  CAS  Google Scholar 

  • Gudyma A, Gudyma Iu (2021b) Effect of compression in molecular spin-crossover chains. Low Temp Phys 47(6):457. https://doi.org/10.1063/10.0004967

    Article  CAS  Google Scholar 

  • Gudyma Iu, Yarema V (2022) Bond-random model of spin-crossover compounds: similarities and differences from spin glasses. Appl Nanosci 12(3):747. https://doi.org/10.1007/s13204-021-01731-9

    Article  CAS  Google Scholar 

  • Gudyma Iu, Ivashko V, Linares J (2014) Diffusionless phase transition with two order parameters in spin-crossover solids. J Appl Phys 116(17):173509. https://doi.org/10.1063/1.4901243

    Article  CAS  Google Scholar 

  • Gudyma Iu, Boboshko K, Boukheddaden K (2020) Reentrant behavior of magnetic ordered phase in spin-crossover solids with quenched disordered ligand field. Phys Lett A 384(26):126677. https://doi.org/10.1016/j.physleta.2020.126677

    Article  CAS  Google Scholar 

  • Gueddida S, Alouani M (2016) Calculated impact of ferromagnetic substrate on the spin crossover in a Fe(1, 10- phenanthroline)2 (NCS) 2 molecule. Phys Rev B 93(18):184433

    Article  Google Scholar 

  • Guionneau P (2014) Crystallography and spin-crossover. A view of breathing materials. Dalton Trans 43(2):382

    Article  CAS  Google Scholar 

  • Gütlich P, Goodwin H (eds) (2004) Spin crossover in transition metal compounds I–III, vol 233–235. Top. Curr. Chem. Springer-Verlag, Berlin/Heidelberg

    Google Scholar 

  • Halcrow MA (ed) (2013) Spin-crossover materials: properties and applications. Wiley, Chichester

    Google Scholar 

  • Kahn O, Martinez C (1998) Spin-transition polymers: from molecular materials toward memory devices. Science 279:44–48

    Article  CAS  Google Scholar 

  • Katzgraber HG, Palassini M, Young A (2001) Monte–Carlo simulations of spin glasses at low temperatures. Phys Rev B 63(18):184422

    Article  Google Scholar 

  • Kipgen L, Bernien M, Ossinger S, Nickel F, Britton AJ, Arruda LM, Naggert H, Luo C, Lotze C, Ryll H et al (2018) Evolution of cooperativity in the spin transition of an iron (II) complex on a graphite surface. Nat Commun 9(1):2984

    Article  Google Scholar 

  • Kirkpatrick S, Sherrington D (1978) Infinite-ranged models of spin-glasses. Phys Rev B 17(11):4384

    Article  CAS  Google Scholar 

  • Kumar KS, Ruben M (2017) Emerging trends in spin crossover (SCO) based functional materials and devices. Coord Chem Rev 346:176

    Article  Google Scholar 

  • Matsumoto T, Newton G, Shiga T, Hayami S, Matsui Y, Okamoto H, Kumai R, Murakami Y, Oshio H (2014) Programmable spin-state switching in a mixed-valence spin-crossover iron grid. Nat Commun 5:3865

    Article  CAS  Google Scholar 

  • Mikolasek M, Manrique-Juarez MD, Shepherd HJ, Ridier K, Rat S, Shalabaeva V, Bas AC, Collings IE, Mathieu F, Cacheux J et al (2018) Complete set of elastic moduli of a spin-crossover solid: spin-state dependence and mechanical actuation. J Am Chem Soc 140(28):8970

    Article  CAS  Google Scholar 

  • Molnár G, Rat S, Salmon L, Nicolazzi W, Bousseksou A (2018) Spin crossover nanomaterials: from fundamental concepts to devices. Adv Mater 30(5):1703862

    Article  Google Scholar 

  • Mosey A, Dale AS, Hao G, N’Diaye A, Dowben PA, Cheng R (2020) Quantitative study of the energy changes in voltage-controlled spin crossover molecular thin films. J Phys Chem Lett 11(19):8231

    Article  CAS  Google Scholar 

  • Mullaney BR, Goux-Capes L, Price DJ, Chastanet G, Létard JF, Kepert CJ (2017) Spin crossover-induced colossal positive and negative thermal expansion in a nanoporous coordination framework material. Nat Commun 8(1):1053

    Article  Google Scholar 

  • Nakamoto A, Kamebuchi H, Enomoto M, Kojima N (2012) Study on the spin crossover transition and glass transition for Fe (II) complex film, [Fe (II)(H-triazole) 3]@ Nafion, by means of Mössbauer spectroscopy. Hyperfine Interact 205(1):41

    Article  CAS  Google Scholar 

  • Ndiaye M, Singh Y, Fourati H, Sy M, Lo B, Boukheddaden K (2021) Isomorphism between the electro-elastic modeling of the spin transition and Ising-like model with competing interactions: Elastic generation of self-organized spin states. J Appl Phys 129(15):153901

    Article  CAS  Google Scholar 

  • Nishino M, Enachescu C, Miyashita S (2019) Multistep spin-crossover transitions induced by the interplay between short-and long-range interactions with frustration on a triangular lattice. Phys Rev B 100(13):134414

    Article  CAS  Google Scholar 

  • Ogou SB, Oke TD, Hontinfinde F, Boukheddaden K (2021) Magnetic phase transitions in an electroelastic model for magnetically ordered spin-crossover solids. Phys Rev B 104(2):024431

    Article  CAS  Google Scholar 

  • Paez-Espejo M, Sy M, Varret F, Boukheddaden K (2014) Quantitative macroscopic treatment of the spatiotemporal properties of spin crossover solids based on a reaction diffusion equation. Phys Rev B 89(2):024306

    Article  Google Scholar 

  • Piedrahita-Bello M, Ridier K, Mikolasek M, Molnár G, Nicolazzi W, Salmon L, Bousseksou A (2019) Drastic lattice softening in mixed triazole ligand Iron (II) spin crossover nanoparticles. Chem Commun 55(33):4769

    Article  CAS  Google Scholar 

  • Pillet S (2021) Spin-crossover materials: getting the most from x-ray crystallography. J Appl Phys 129(18):181101

    Article  CAS  Google Scholar 

  • Rat S, Piedrahita-Bello M, Salmon L, Molnár G, Demont P, Bousseksou A (2018) Coupling mechanical and electrical properties in spin crossover polymer composites. Adv Mater 30(8):1705275

    Article  Google Scholar 

  • Rikvold PA, Brown G, Miyashita S, Omand C, Nishino M (2016) Equilibrium, metastability, and hysteresis in a model spin-crossover material with nearest-neighbor antiferromagnetic-like and long-range ferromagnetic-like interactions. Phys Rev B 93(6):064109

    Article  Google Scholar 

  • Salmon L, Catala L (2018) Spin-crossover nanoparticles and nanocomposite materials. C R Chim 21(12):1230

    Article  CAS  Google Scholar 

  • Shepherd H, Gural’skiy I, Quintero C, Tricard S, Salmon L, Molnár G, Bousseksou A (2013) Molecular actuators driven by cooperative spin-state switching. Nat Commun 4:607

    Article  Google Scholar 

  • Takahashi H, Ishiwata S, Okazaki R, Yasui Y, Terasaki I (2018) Enhanced thermopower via spin-state modification. Phys Rev B 98(2):024405

    Article  CAS  Google Scholar 

  • Tsukiashi A, Min KS, Kitayama H, Terasawa H, Yoshinaga S, Takeda M, Lindoy LF, Hayami S (2018) Application of spin-crossover water soluble nanoparticles for use as MRI contrast agents. Sci Rep 8(1):1

    Article  CAS  Google Scholar 

  • von Ranke PJ, Alho BP, Ribas RM, Nobrega EP, Caldas A, de Sousa VSR, Colaço MV, Marques LF, Rocco DL, Ribeiro PO (2018) Colossal refrigerant capacity in [Fe (hyptrz) 3] A2 \(\cdot\) H2O around the freezing temperature of water. Phys Rev B 98(22):224408

    Article  Google Scholar 

  • Wajnflasz J, Pick R (1971) Transitions «low spin»-«high spin» dans les complexes de Fe2+. J Phys Coll 32(C1):C1

    Google Scholar 

  • Watanabe H, Tanaka K, Bréfuel N, Cailleau H, Létard JF, Ravy S, Fertey P, Nishino M, Miyashita S, Collet E (2016) Ordering phenomena of high-spin/low-spin states in stepwise spin-crossover materials described by the ANNNI model. Phys Rev B 93(1):014419

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support from Ministry of Education and Science of Ukraine (No. 0122U001981).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iurii Gudyma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gudyma, I., Yarema, V. On the role of random bond in spin-crossover compounds. Appl Nanosci 13, 6719–6726 (2023). https://doi.org/10.1007/s13204-022-02739-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-022-02739-5

Keywords

Navigation