Skip to main content
Log in

Processing of nanoreinforced aluminium hybrid metal matrix composites and the effect of post-heat treatment: a review

  • Review Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The demand for cutting-edge materials with a high strength-to-weight ratio and economic considerations is steadily increasing. Lightweight materials such as aluminium (Al) and its alloys are attractive, but some properties such as low thermal stability and high wear rate limit the application of aluminium alloys (AA) to some extent. Many researchers have developed various composites to get around these restrictions and increase the performance of aluminium and its alloy. Metal matrix composites (MMCs) with nanoparticles have revealed greater mechanical and tribological properties compared with micron-sized reinforcements. Most engineering applications require materials with excellent multidimensional properties, which are difficult to achieve using single reinforced MMCs. Hybrid metal matrix composites (HMMCs) with superior properties are the latest trends in composite technology. The choice of reinforcement selection has a vibrant role in the manufacturing of hybrid metal matrix composites. Researchers face a major challenge in finding optimum reinforcement combinations and their corresponding concentrations. The manufacturing of nanocomposites is difficult due to their high surface area and energy. To determine the most effective reinforcement combinations for hybrid composites, this article addresses several nanoreinforcements, their effects, and the appropriate processing methods for aluminium and its alloys. Researchers have paid less attention to the impact of precipitation hardening in aluminium and its alloys; thus, this paper also considers the effect of post-heat treatment of aluminium composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

No data available.

Abbreviations

Al:

Aluminium

AA:

Aluminium alloys

MMCs:

Metal matrix composites

HMMCs:

Hybrid metal matrix composites

AlMMCs:

Aluminium metal matrix composites

AlMMNCs:

Aluminium metal matrix nanocomposites

Cu:

Copper

Mn:

Manganese

Si:

Silicon

Mg:

Magnesium

Li:

Lithium

Ti:

Titanium

Ni:

Nickel

RM:

Red mud

FA:

Fly ash

BLA:

Bamboo leaf ash

CHA:

Coconut husk ash

CTE:

Coefficient of thermal expansion

CNTs:

Carbon nanotubes

hBN:

Hexagonal boron nitride

Cf :

Carbon fibre

CoF:

Coefficient of friction

PSR:

Particle size ratio

MWCNTs:

Multi-walled carbon nanotubes

HVOF:

High-velocity oxy-fuel

MA:

Mechanical alloying

HEBM:

High-energy ball milling

PCA:

Process control agents

PM:

Powder metallurgy

BPR:

Ball to powder ratio

SPS:

Spark plasma sintering

FSP:

Friction stir processing

XD:

Exothermic dispersion

UTS:

Ultimate tensile strength

Al2O3 :

Aluminium oxide

TiC:

Titanium carbide

Si3N4 :

Silicon nitride

SiC:

Silicon carbide

B4C:

Boron carbide

Gr:

Graphene

TiB2 :

Titanium diboride

WS2 :

Tungsten disulphide

MoS2 :

Molybdenum disulphide

ZrC:

Zirconium carbide

References

  • Agarwal P, Kishore A, Kumar V, Soni SK, Thomas B (2019) Fabrication and machinability analysis of squeeze cast Al 7075/h-BN/graphene hybrid nanocomposite. Eng Res Expr 1(1):015004. https://doi.org/10.1088/2631-8695/ab26f5

    Article  Google Scholar 

  • Ahamad N, Mohammad A, Gupta P (2021) Wear characteristics of Al matrix reinforced with Al2O3-carbon hybrid metal matrix composites. Mater Today Proc 38:63–68

    Article  CAS  Google Scholar 

  • Akbari MK, Baharvandi HR, Shirvanimoghaddam K (2015) Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Mater Des 66:150–161

    Article  Google Scholar 

  • Alten A et al (2019) Production and mechanical characterization of Ni-coated carbon fibers reinforced Al-6063 alloy matrix composites. J Alloys Compd 787:543–550

    Article  CAS  Google Scholar 

  • Amirkhanlou S, Niroumand B (2010) Synthesis and characterization of 356-SiCp composites by stir casting and compocasting methods. Trans Nonferrous Metals Soc China 20:s788–s793

    Article  Google Scholar 

  • Ashwath P, Xavior MA (2018) Effect of ceramic reinforcements on microwave sintered metal matrix composites. Mater Manuf Process 33(1):7–12

    Article  CAS  Google Scholar 

  • Assadi H et al (2016) Cold spraying–a materials perspective. Acta Mater 116:382–407

    Article  CAS  Google Scholar 

  • Ataiwi AH, Dawood JJ, Madhloom MA (2021) Effect of precipitation hardening treatments on tensile properties, impact toughness, and microstructural changes of aluminum alloy AA6061. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.06.011

    Article  Google Scholar 

  • Auradi V, Rajesh GL, Kori SA (2014) Preparation and evaluation of mechanical properties of 6061Al–B4Cp composites produced via two-stage melt stirring. Mater Manuf Processes 29(2):194–200

    Article  CAS  Google Scholar 

  • Azadi M et al (2020) Investigation of tribological and compressive behaviors of Al/SiO2 nanocomposites after T6 heat treatment. Sādhanā 45(1):1–13

    Article  Google Scholar 

  • Bahl S (2021) Fiber reinforced metal matrix composites-a review. Mater Today Proc 39:317–323

    Article  CAS  Google Scholar 

  • Bakshi SR, Lahiri D, Agarwal A (2010) Carbon nanotube reinforced metal matrix composites-a review. Int Mater Rev 55(1):41–64

    Article  CAS  Google Scholar 

  • Bhoi NK, Singh H, Pratap S (2020) Developments in the aluminum metal matrix composites reinforced by micro/nano particles–a review. J Compos Mater 54(6):813–833

    Article  CAS  Google Scholar 

  • Cabeza M et al (2017) Effect of high energy ball milling on the morphology, microstructure and properties of nano-sized TiC particle-reinforced 6005A aluminium alloy matrix composite. Powder Technol 321:31–43

    Article  CAS  Google Scholar 

  • Canakci A, Varol T (2015) A novel method for the production of metal powders without conventional atomization process. J Clean Prod 99:312–319

    Article  CAS  Google Scholar 

  • Chand S (2000) Review carbon fibers for composites. J Mater Sci 35(6):1303–1313

    Article  CAS  Google Scholar 

  • Chandel R, Sharma N, Bansal S (2021) A review on recent developments of aluminum-based hybrid composites for automotive applications. Emergent Mater 4(5):1243–1257. https://doi.org/10.1007/s42247-021-00186-6

    Article  CAS  Google Scholar 

  • Chawla N, Shen Y-L (2001) Mechanical behavior of particle reinforced metal matrix composites. Adv Eng Mater 3(6):357–370

    Article  CAS  Google Scholar 

  • Chinmayee K, Surekha B (2021) Characterisation of aluminium metal matrix composites reinforced with titanium carbide and red mud. Mater Res Innov 25(2):67–75

    Article  Google Scholar 

  • Czerwinski F (2020) Thermal stability of aluminum alloys. Materials 13(15):3441

    Article  CAS  Google Scholar 

  • Dai Q, Kelly J, Elgowainy A (2016) Vehicle materials: material composition of US light-duty vehicles. In: Energy systems division. Argonne National Labs, Chicago, p 1–30

  • Deepanraj B, Senthilkumar N, Tamizharasan T (2021) Sintering parameters consequence on microstructure and hardness of copper alloy prepared by powder metallurgy. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.06.389

    Article  Google Scholar 

  • Devaganesh S, Venkatesh N, Kumar PKD (2020) Investigation on influence of solid lubricants over mechanical behavior of hybrid Al7075-SiC metal matrix composites. Mater Today Proc 27:2864–2869

    Article  CAS  Google Scholar 

  • Domnich V et al (2011) Boron carbide: structure, properties, and stability under stress. J Am Ceram Soc 94(11):3605–3628

    Article  CAS  Google Scholar 

  • Esawi AMK et al (2011) The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites. Compos A Appl Sci Manuf 42(3):234–243

    Article  Google Scholar 

  • Faisal N, Kumar K (2018) Mechanical and tribological behaviour of nano scaled silicon carbide reinforced aluminium composites. J Exp Nanosci 13(sup1):S1–S13

    Article  CAS  Google Scholar 

  • Fei C et al (2015) Microstructure, mechanical properties and wear behaviour of Zn–Al–Cu–TiB2 in situ composites. Trans Nonferrous Metals Soc China 25(1):103–111

    Article  Google Scholar 

  • Frank E, Hermanutz F, Buchmeiser MR (2012) Carbon fibers: precursors, manufacturing, and properties. Macromol Mater Eng 297(6):493–501

    Article  CAS  Google Scholar 

  • Guo MLT, Tsao CYA (2000) Tribological behavior of self-lubricating aluminium/SiC/graphite hybrid composites synthesized by the semi-solid powder-densification method. Compos Sci Technol 60(1):65–74

    Article  CAS  Google Scholar 

  • Gupta N, Luong DD, Cho K (2012) Magnesium matrix composite foams—density, mechanical properties, and applications. Metals 2(3):238–252

    Article  CAS  Google Scholar 

  • Gurusamy P, Prabu SB (2013) Effect of the squeeze pressure on the mechanical properties of the squeeze cast Al/SiCp metal matrix composite. Int J Microstruct Mater Prop 8(4–5):299–312

    CAS  Google Scholar 

  • Haghshenas M (2016) Metal–matrix composites. Elseiver

  • Haq Ul, Irfan M, Anand A (2018) Dry sliding friction and wear behavior of AA7075-Si3N4 composite. SILICON 10(5):1819–1829

    Article  Google Scholar 

  • Hossain S et al (2020) Fabrication, microstructural and mechanical behavior of Al-Al2O3-SiC hybrid metal matrix composites. Mater Today Proc 21:1458–1461

    Article  CAS  Google Scholar 

  • Hussain S et al (2020) Fe3O4 nanoparticles decorated multi-walled carbon nanotubes based magnetic nanofluid for heat transfer application. Mater Lett 274:128043

    Article  CAS  Google Scholar 

  • Idrisi AH, Mourad A-HI (2019) Conventional stir casting versus ultrasonic assisted stir casting process: mechanical and physical characteristics of AMCs. J Alloys Compd 805:502–508

    Article  CAS  Google Scholar 

  • Jerome S et al (2010) Synthesis and evaluation of mechanical and high temperature tribological properties of in-situ Al–TiC composites. Tribol Int 43(11):2029–2036

    Article  CAS  Google Scholar 

  • Kainer KU (2006) Basics of metal matrix composites. Metal matrix composites: custom-made materials for automotive and aerospace engineering. WILEY VCH & CO. KgaA, Weinhelm, pp 1–54

    Chapter  Google Scholar 

  • Kannan C, Ramanujam R (2017) Comparative study on the mechanical and microstructural characterisation of AA 7075 nano and hybrid nanocomposites produced by stir and squeeze casting. J Adv Res 8(4):309–319

    Article  CAS  Google Scholar 

  • Kanthavel K, Sumesh KR, Saravanakumar P (2016) Study of tribological properties on Al/Al2O3/MoS2 hybrid composite processed by powder metallurgy. Alex Eng J 55(1):13–17

    Article  Google Scholar 

  • Kaushik NCH, Rao RN (2016) The effect of wear parameters and heat treatment on two body abrasive wear of Al–SiC–Gr hybrid composites. Tribol Int 96:184–190

    Article  CAS  Google Scholar 

  • Kazakov NF (ed) (1985) Diffusion bonding of materials. Elsevier. https://doi.org/10.1016/C2013-0-03774-7

  • Khanna V, Kumar V, Bansal SA (2021) Mechanical properties of aluminium-graphene/carbon nanotubes (CNTs) metal matrix composites: Advancement, opportunities and perspective. Mater Res Bull 138:111224

    Article  CAS  Google Scholar 

  • Kim KK, Kim SM, Lee YH (2014) A new horizon for hexagonal boron nitride film. J Korean Phys Soc 64(10):1605–1616

    Article  CAS  Google Scholar 

  • Kumar UKGBAV (2017) Method of stir casting of aluminum metal matrix composites: a review. Mater Today Proc 4(2):1140–1146

    Article  Google Scholar 

  • Kumar GBV, Rao CSP, Selvaraj N (2011) Mechanical and tribological behavior of particulate reinforced aluminum metal matrix composites–a review. J Miner Mater Charact Eng 10(01):59–91

    Google Scholar 

  • Kumar PN, Rajadurai A, Muthuramalingam T (2018) Multi-response optimization on mechanical properties of silica fly ash filled polyester composites using taguchi-grey relational analysis. SILICON 10(4):1723–1729

    Article  CAS  Google Scholar 

  • Kumar J et al (2020) Comparative study on the mechanical, tribological, morphological and structural properties of vortex casting processed, Al–SiC–Cr hybrid metal matrix composites for high strength wear-resistant applications: fabrication and characterizations. J Mater Res Technol 9(6):13607–13615

    Article  CAS  Google Scholar 

  • Kumar PL et al (2022) Recent advances in aluminium matrix composites reinforced with graphene-based nanomaterial: a critical review. Prog Mater Sci. https://doi.org/10.1016/j.pmatsci.2022.100948

    Article  Google Scholar 

  • Labib F, Mahmudi R, Ghasemi HM (2018) High-temperature mechanical properties of the P/M Extruded Mg-SiCp composites. J Mater Eng Perform 27(3):1224–1231

    Article  CAS  Google Scholar 

  • Li B et al (2017) Effect of TiN nanoparticles on microstructure and properties of Al2024-TiN nanocomposite by high energy milling and spark plasma sintering. J Alloys Compd 726:638–650

    Article  CAS  Google Scholar 

  • Liu K, Chen X-G (2015) Development of Al–Mn–Mg 3004 alloy for applications at elevated temperature via dispersoid strengthening. Mater Des 84:340–350

    Article  CAS  Google Scholar 

  • Lloyd DJ (1994) Particle reinforced aluminium and magnesium matrix composites. Int Mater Rev 39(1):1–23

    Article  CAS  Google Scholar 

  • Loganathan P, Gnanavelbabu A, Rajkumar K (2021) Influence of ZrB2/hBN particles on the wear behaviour of AA7075 composites fabricated through stir followed by squeeze cast technique. Proc Inst Mech Eng J J Eng Tribol 235(1):149–160

    Article  CAS  Google Scholar 

  • Lu L, Lai MO, Zhang S (1997) Diffusion in mechanical alloying. J Mater Process Technol 67(1–3):100–104

    Article  Google Scholar 

  • Mahaviradhan N et al (2021) Experimental investigation on mechanical properties of carbon fiber reinforced aluminum metal matrix composite. Mater Today Proc 39:743–747

    Article  CAS  Google Scholar 

  • Maleki A, Niroumand B, Shafyei A (2006) Effects of squeeze casting parameters on density, macrostructure and hardness of LM13 alloy. Mater Sci Eng A 428(1–2):135–140

    Article  Google Scholar 

  • Mamedov V (2002) Spark plasma sintering as advanced PM sintering method. Powder Metall 45(4):322–328

    Article  CAS  Google Scholar 

  • Manohar G et al. (2018) Fabrication of metal matrix composites by powder metallurgy: a review. In: AIP conference proceedings, vol 1952. AIP Publishing LLC, p 020041

  • Manohar G, Pandey KM, Maity SR (2021a) Effect of sintering mechanisms on mechanical properties of AA7075/B4C composite fabricated by powder metallurgy techniques. Ceram Int 47(11):15147–15154

    Article  CAS  Google Scholar 

  • Manohar G, Pandey KM, Maity SR (2021b) Effect of microwave sintering on the microstructure and mechanical properties of AA7075/B4C/ZrC hybrid nano composite fabricated by powder metallurgy techniques. Ceram Int 47(23):32610–32618

    Article  CAS  Google Scholar 

  • Mattli MR et al (2019) Structural and mechanical properties of amorphous Si3N4 nanoparticles reinforced Al matrix composites prepared by microwave sintering. Ceramics 2(1):126–134

    Article  CAS  Google Scholar 

  • Mattli MR et al (2021) Study of microstructural and mechanical properties of Al/SiC/TiO2 hybrid nanocomposites developed by microwave sintering. Crystals 11(9):1078

    Article  CAS  Google Scholar 

  • Mavhungu ST et al (2017) Aluminum matrix composites for industrial use: advances and trends. Procedia Manuf 7:178–182

    Article  Google Scholar 

  • Mazaheri Y et al (2013) Comparison of microstructural and mechanical properties of Al–TiC, Al–B4C and Al–TiC–B4C composites prepared by casting techniques. Mater Sci Eng A 560:278–287

    Article  CAS  Google Scholar 

  • Menachery N, CV Biju, MT Sijo. (2013) Investigation of mechanical properties and grain structure of 5xxx aluminium alloys under precisely controlled annealed conditions. Int J Sci Res Publ 3(1)

  • Mendoza-Duarte JM et al (2015) Study of Al composites prepared by high-energy ball milling; Effect of processing conditions. J Alloy Compd 643:S172–S177

    Article  CAS  Google Scholar 

  • Miller WS et al (2000) Recent development in aluminium alloys for the automotive industry. Mater Sci Eng A 280(1):37–49

    Article  Google Scholar 

  • Mishra RS, Ma ZY, Charit I (2003) Friction stir processing: a novel technique for fabrication of surface composite. Mater Sci Eng A 341(1–2):307–310

    Article  Google Scholar 

  • Mittal P et al (2020) Structural, wear and thermal behaviour of Cu–Al2O3–graphite hybrid metal matrix composites. Proc. Inst. Mech. Eng. L 234(8):1154–1164

    CAS  Google Scholar 

  • Moghadam AD et al (2015) Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene–a review. Compos B Eng 77:402–420

    Article  Google Scholar 

  • Moona G et al (2018) Aluminium metal matrix composites: a retrospective investigation. IJPAP 56(2):164–175

    Google Scholar 

  • Mu DKQ et al (2021) The microstructures and mechanical properties of a 5vol% SiC/AA2024 nanocomposite fabricated by powder metallurgy. Mater Charact 175:111090

    Article  CAS  Google Scholar 

  • Mu W et al (2022) Fabrication of continuous carbon-fibers reinforced aluminum matrix composites and coating evolution during heat treatment. J Mater Res Technol 17:1852–1867

    Article  CAS  Google Scholar 

  • Munro RG (2000) Material properties of titanium diboride. J Res Natl Inst Stand Technol 105(5):709

    Article  CAS  Google Scholar 

  • Nam DH et al (2012) Effect of CNTs on precipitation hardening behavior of CNT/Al–Cu composites. Carbon 50(13):4809–4814

    Article  CAS  Google Scholar 

  • Namini AS et al (2021) Spark plasma sinterability of TiC ceramics with different nitride additives. J Taiwan Inst Chem Eng 123:363–370

    Article  Google Scholar 

  • Narayanasamy P, Selvakumar N, Balasundar P (2015) Effect of hybridizing MoS2 on the tribological behaviour of Mg–TiC composites. Trans Indian Inst Met 68(5):911–925

    Article  CAS  Google Scholar 

  • Naseem A et al (2021) Wear, optimization and surface analysis of Al-Al2O3-TiO2 hybrid metal matrix composites. Proc Inst Mech Eng Part J 235(1):93–102

    Article  Google Scholar 

  • Pakdel A et al (2017) A comprehensive microstructural analysis of Al–WC micro-and nano-composites prepared by spark plasma sintering. Mater Des 119:225–234

    Article  CAS  Google Scholar 

  • Parakh A et al (2019) Fabrication and machinability analysis of squeeze cast Al 7075/h-BN/graphene hybrid nanocomposite. Eng Res Expr 1(1):015004

    Article  Google Scholar 

  • Pensl G et al (2005) SiC material properties. Int J High Speed Electron Syst 15(04):705–745

    Article  CAS  Google Scholar 

  • Podgornik B et al (2015) Tribological behaviour and lubrication performance of hexagonal boron nitride (h-BN) as a replacement for graphite in aluminium forming. Tribol Int 81:267–275

    Article  CAS  Google Scholar 

  • Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R Rep 43(3):61–102

    Article  Google Scholar 

  • Pradeep Kumar GS et al (2021) Studies on parametric optimization of HVOF-sprayed Cr2O3 coatings on Al6061 alloy. Trans Indian Inst Met 74(8):2013–2025

    Article  CAS  Google Scholar 

  • Prakash DS et al (2021) Experimental investigation of nano reinforced aluminium based metal matrix composites. Mater Today Proc 54:852–857

    Article  Google Scholar 

  • Prasad SV, Asthana R (2004) Aluminum metal-matrix composites for automotive applications: tribological considerations. Tribol Lett 17(3):445–453

    Article  CAS  Google Scholar 

  • Raj P, Biju PL, Deepanraj B et al (2022) A systematic review on characterization of hybrid aluminium nanocomposites. Mater Today Proc. https://doi.org/10.1016/j.matpr.2022.08.236

    Article  Google Scholar 

  • Rajak DK et al (2019) Recent progress of reinforcement materials: a comprehensive overview of composite materials. J Mater Res Technol 8(6):6354–6374

    Article  CAS  Google Scholar 

  • Rajkumar S et al (2022) Physical and mechanical properties of AA2219/BN composites. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.12.116

    Article  Google Scholar 

  • Rakshath S et al (2020) Dry sliding and abrasive wear behaviour of Al-7075 reinforced with alumina and boron nitride particulates. Mater Today Proc 22:619–626

    Article  CAS  Google Scholar 

  • Rana V, Kumar H, Kumar A (2022) Fabrication of hybrid metal matrix composites (HMMCs)–a review of comprehensive research studies. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.12.241

    Article  Google Scholar 

  • Rao TB (2021) Microstructural, mechanical, and wear properties characterization and strengthening mechanisms of Al7075/SiCnp composites processed through ultrasonic cavitation assisted stir-casting. Mater Sci Eng A 805:140553

    Article  CAS  Google Scholar 

  • Rafi Raza M, Ahmad F, Ikram N, Ahmad R, Salam A (2011) Development and strengthening of 2219 aluminium alloy by mechanical working and heat treatment. J Appl Sci 11(10):1857–1861

    Article  Google Scholar 

  • Reddy MP et al (2017) Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques. Prog Nat Sci 27(5):606–614

    Article  CAS  Google Scholar 

  • Riley FL (2000) Silicon nitride and related materials. J Am Ceram Soc 83(2):245–265

    Article  CAS  Google Scholar 

  • Saheb N et al (2013) Age hardening behavior of carbon nanotube reinforced aluminum nanocomposites. J Nano Res 21:29–35

    Article  Google Scholar 

  • Sajjadi SA, Ezatpour HR, Parizi MT (2012) Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes. Mater Des 34:106–111

    Article  CAS  Google Scholar 

  • Sharma A, Jae PJ (2017) Possibility of Al-Si brazing alloys for industrial microjoining applications. J Microelectron Packag Soc 24(3):35–40

    Google Scholar 

  • Sharma VMJ et al (2009) Studies on the work-hardening behavior of AA2219 under different aging treatments. Metall and Mater Trans A 40(13):3186–3195

    Article  Google Scholar 

  • Sharma P, Khanduja D, Sharma S (2015) Production of hybrid composite by a novel process and its physical comparison with single reinforced composites. Mater Today Proc 2(4–5):2698–2707

    Article  CAS  Google Scholar 

  • Sharma DK, Mahant D, Upadhyay G (2020) Manufacturing of metal matrix composites: a state of review. Mater Today Proc 26:506–519

    Article  CAS  Google Scholar 

  • Singh N, Belokar RM (2021) Tribological behavior of aluminum and magnesium-based hybrid metal matrix composites: a state-of-art review. Mater Today Proc 44:460–466

    Article  CAS  Google Scholar 

  • Singh K et al (2021) Mechanical study of Al 7050 and Al 7075 based metal matrix composites: a review. Mater Today Proc 43:673–677

    Article  CAS  Google Scholar 

  • Slipenyuk A et al (2004) The effect of matrix to reinforcement particle size ratio (PSR) on the microstructure and mechanical properties of a P/M processed AlCuMn/SiCp MMC. Mater Sci Eng, A 381(1–2):165–170

    Article  Google Scholar 

  • Starke EA Jr, Staley JT (1996) Application of modern aluminum alloys to aircraft. Prog Aerosp Sci 32(2–3):131–172

    Article  Google Scholar 

  • Stojanovic B, Igor E (2018) Application of aluminum and aluminum alloys in engineering. Appl Eng Lett. https://doi.org/10.18485/aeletters.2018.3.2.2

    Article  Google Scholar 

  • Sundaram J, Prakash JU, Kagitha H (2021) Wear properties on AA2014/Al 2 O 3/TiB 2 hybrid metal matrix composites. Innovative design, analysis and development practices in aerospace and automotive engineering. Springer, Singapore, pp 389–395

    Chapter  Google Scholar 

  • Surya MS, Gugulothu SK (2021) Fabrication, mechanical and wear characterization of silicon carbide reinforced aluminium 7075 metal matrix composite. SILICON. https://doi.org/10.1007/s12633-021-00992-x

    Article  Google Scholar 

  • Tabandeh-Khorshid M et al (2016) Tribological performance of self-lubricating aluminum matrix nanocomposites: role of graphene nanoplatelets. Eng Sci Technol Int J 19(1):463–469

    Google Scholar 

  • Thevenot F (1990) Boron carbide—a comprehensive review. J Eur Ceram Soc 6(4):205–225

    Article  CAS  Google Scholar 

  • Thomas S (2018) Effect of MWCNT reinforcement on the precipitation-hardening behavior of AA2219. Int J Miner Metall Mater 25(1):53–61

    Article  CAS  Google Scholar 

  • Thomas S (2021) Effect of a novel sintering technique: hot coining on microstructure and mechanical properties of MWCNT reinforced Al metal matrix nanocomposite. Adv Mater Process Technol. https://doi.org/10.1080/2374068X.2021.1970999

    Article  Google Scholar 

  • Thomas S, Umasankar V (2019) Review of recent progress in the development and properties of aluminum metal matrix composites reinforced with multiwalled carbon nanotube by powder metallurgy route. Mater Perform Charact 8(3):371–400

    CAS  Google Scholar 

  • Thomas S et al (2019a) Self lubricating property of MWCNT in AA2219 composites during high energy ball milling. Mater Today Proc 18:3387–3393

    Article  CAS  Google Scholar 

  • Thomas S et al (2019b) Effect of sonication in enhancing the uniformity of MWCNT distribution in aluminium alloy AA2219 matrix. Mater Today Proc 18:4058–4066

    Article  CAS  Google Scholar 

  • Thomas S et al (2020) An improved compocasting technique for uniformly dispersed multi-walled carbon nanotube in AA2219 alloy melt. FME Trans 48(3):581–587

    Article  Google Scholar 

  • Thomas S, Tom P, Umasankar V (2020) Effect of MWCNT concentration on microstructures, mechanical properties and sintering behaviour of spark plasma sintered AA2219-MWCNT composites. Mater Today Proc 22:1424–1432

    Article  CAS  Google Scholar 

  • Tjong SC (2013) Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater Sci Eng R Rep 74(10):281–350

    Article  Google Scholar 

  • Ulloa-Castillo NA et al (2021) Enhancement of electrical conductivity of aluminum-based nanocomposite produced by spark plasma sintering. Nanomaterials 11(5):1150

    Article  CAS  Google Scholar 

  • Umasankar V, Shijo T (2018) Influence of manufacturing process on distribution of MWCNT in aluminium alloy matrix and its effect on microhardness. Mater Sci Forum 928:32–37

    Article  Google Scholar 

  • Vani VV, Sanjay KC (2018) The effect of process parameters in aluminum metal matrix composites with powder metallurgy. Manuf Rev 5:7

    Google Scholar 

  • Varol T, Canakci A (2013) Effect of particle size and ratio of B4C reinforcement on properties and morphology of nanocrystalline Al2024-B4C composite powders. Powder Technol 246:462–472

    Article  CAS  Google Scholar 

  • Vassel A (1999) Continuous fibre reinforced titanium and aluminium composites: a comparison. Mater Sci Eng A 263(2):305–313

    Article  Google Scholar 

  • Veeravalli RR, Nallu R, Mohiuddin SMM (2016) Mechanical and tribological properties of AA7075–TiC metal matrix composites under heat treated (T6) and cast conditions. J Mater Res Technol 5(4):377–383

    Article  CAS  Google Scholar 

  • Viala JC et al (1997) Chemical reactivity of aluminium with boron carbide. J Mater Sci 32(17):4559–4573

    Article  CAS  Google Scholar 

  • Viswanatha BM et al (2013) Mechanical property evaluation of A356/SiCp/Gr metal matrix composites. J Eng Sci Technol 8(6):754–763

    Google Scholar 

  • Warren AS (2004) Developments and challenges for aluminum–a boeing perspective. Mater Forum 28:24–31

    CAS  Google Scholar 

  • Xuan Z et al (2021) Fabrication and characteristic of 2024Al matrix composites reinforced by carbon fibers and ZrCp by spark plasma sintering. J Alloys Compd 889:161543

    Article  Google Scholar 

  • Yuan D et al (2018) Preparation and properties of nano-SiCp/A356 composites synthesised with a new process. Mater Sci Technol 34(12):1415–1424

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of All India Council for Technical Education (AICTE), New Delhi, India through the project under Research Promotion Scheme (RPS), Grant No. 8-62/FDC/RPS/POLICY-C/2021-22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Deepanraj.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menachery, N., Thomas, S., Deepanraj, B. et al. Processing of nanoreinforced aluminium hybrid metal matrix composites and the effect of post-heat treatment: a review. Appl Nanosci 13, 4075–4099 (2023). https://doi.org/10.1007/s13204-022-02704-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-022-02704-2

Keywords

Navigation